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ABSTRACT 

 

        Fault-tree analysis is a widely adopted method for performing probabilistic risk assessment within the nuclear industry. 

However, its effectiveness is often constrained by the availability and quality of reliability data, especially concerning basic 

events. This limitation introduces significant uncertainty in the probability distributions used to model failure events. 

Furthermore, the assumption of independence among fault-tree events can result in an underestimation of the overall system 

risk. The paper proposes a two-step probabilistic framework aimed at improving fault-tree analysis under such uncertainties. 

The first step applies an entropy-based affine-invariant stochastic model updating scheme to construct probability-boxes over 

limited data. The second step propagates these probability-boxes through the fault-tree logic using probability bounds analysis, 

which explicitly incorporates dependency uncertainties. The result provides a more robust and conservative estimate of the top-

event failure probability, enhancing the probabilistic risk assessment towards nuclear safety. 
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I. INTRODUCTION 

  

In recent years, nuclear energy has become an increasingly promising option on a global scale considering climate change 

and the need for de-carbonisation. Such an option, however, comes with significant risks as seen from the past severe nuclear 

accidents such as the Three Mile Island accident in 1979, the Chernobyl accident in 1986, and the Fukushima-Daiichi accident 

in 2011 [1]. This brings about the importance of nuclear safety, and therefore the need for probabilistic risk assessment. A 

standard tool for probabilistic risk assessment is fault-tree analysis. However, its effectiveness is often limited by two practical 

issues: 1) the polymorphic uncertainty associated with the limited availability of reliability data to characterise the failure 

probability distribution associated with a given basic event; and 2) the epistemic uncertainty over the dependency between the 

basic and the intermediate events of the fault-tree. 

Hence, the research objectives and contributions of the paper are two-fold: 1) the proposal of a two-step approach towards 

performing a fault-tree analysis under limited data and uncertain event dependencies, which involves the entropy-based affine-

invariant stochastic model updating framework along with probability bounds analysis. Such approach is yet to be presented 

within the existing literature; and 2) to implement and validate the proposed approach on a fault-tree model of a “reversed flow 

of the water inlet system” accident within the Thai Research Reactor-1/Modification 1 (TRR-1/M1) research reactor [2]. 

To realize the research objectives, the paper is structured as follows: Section II presents an overview of the proposed 

methodology. This includes a review of the Bayesian model updating theory, and the Boolean algebra under the independence 

assumption and uncertain dependencies between multiple events; Section III presents the application case study which 
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introduces the TRR-1/M1 research reactor, the problem set-up, and the results and discussions; and Section IV provides a 

summary of the key findings and concludes the paper. 

 

II. PROPOSED METHODLOGY 

 

II.A. Stochastic Model Updating 

 

II.A.1. Approximate Bayesian Computation 

 

Bayesian model updating is a stochastic approach towards model updating to which the mathematical formalism follows: 

 

                                                               𝑃(𝜽|𝑫, 𝑀) =
𝑃(𝜽|𝑀)⋅𝑃(𝑫|𝜽, 𝑀)

𝑃(𝑫|𝑀)
                                                 (1) 

 
where 𝑃(𝜽|𝑀) is the prior distribution characterising the prior knowledge on the inferred parameter(s) 𝜽 before collecting data 

𝑫, 𝑃(𝑫|𝜽, 𝑀) is the likelihood function reflecting the degree of agreement between the observed data 𝑫 and the model 

prediction from 𝑀 given 𝜽, and 𝑃(𝑫|𝑀) is the evidence which ensures that the posterior integrates to one. Details on the terms 

in Eq. (1) are found in [3] and [4]. As 𝑃(𝑫|𝑀) is a numerical constant, it can be neglected, and the posterior is re-expressed 

as: 

 

                                                               𝑃(𝜽|𝑫, 𝑀) ∝  𝑃(𝜽|𝑀) ⋅ 𝑃(𝑫|𝜽, 𝑀)                                    (2) 

 

An important aspect in Bayesian model updating is the definition of the likelihood function 𝑃(𝑫|𝜽, 𝑀), which at times 

may not be possible. In such case, the Approximate Bayesian Computation (ABC) approach is implemented as it provides a 

likelihood-free approach. For the work, the approximate Gaussian likelihood function is implemented [5]: 

 

                                                                 𝑃(𝑫|𝜽, 𝑀) = exp [−
𝑑2

𝜀2]                                                 (3) 

 

where 𝑑 is the distance function, while 𝜀 is the width-factor acting as the pre-defined parameter controlling the centralisation 

degree of the posterior. It is proposed in [5] that the width-factor should lie within the interval of [10−3, 10−1]. For the work 

presented in the paper, the Jensen-Shannon divergence 𝑑JS is implemented as the distance function which is defined as: 

 

                                 𝑑JS(𝑝1, 𝑝2) =
1

2
⋅ (𝑑KL(𝑝1 || 𝑇) +  𝑑KL(𝑝2 || 𝑇)) ,     for T =

1

2
⋅ (𝑝1 + 𝑝2)          (4) 

 

where: 

 

                                           𝑑KL(𝑝1||𝑝2) =  ∑ …
𝑁bin
𝑥𝑑=1 ∑  𝑝1(𝑏𝑥1,…,𝑥𝑑

)
𝑁bin
𝑥1=1 ⋅ log [

𝑝1(𝑏𝑥1,…,𝑥𝑑
)

𝑝2(𝑏𝑥1,…,𝑥𝑑
)
]                       (5) 

 

for which 𝑁bin denotes the total bin number used to approximate the distributions 𝑝1 and 𝑝2, and log is the natural logarithm 

(to the base e).  
In the context of ABC, the interest would be to compute 𝑑JS(𝑝𝑀 , 𝑝𝑫) where 𝑝𝑀 is the distribution of the model prediction while 

𝑝𝑫 is the distribution of the observed data. Such distance function was first implemented for ABC in [7], and recently in [8] 

and [9]. 

An important aspect of the Jenson-Shannon divergence is the computation of the parameter 𝑁bin. An approach to do so 

would be via the adaptive-binning algorithm, details on which the readers may refer to [10]. 

 

II.A.2. Transitional Ensemble Markov Chain Monte Carlo 

 

   An approach to sample from the posterior defined by Eq. (2) would be the Transitional Ensemble Markov Chain Monte 

Carlo (TEMCMC) method [11]. It is a variant of the Transitional Markov Chain Monte Carlo sampling technique proposed in 
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[12] which allows for the generation of samples from complex-shaped posteriors (e.g., very peaked or having multiple peaks) 

in an iterative manner. This is done using a series of intermediate functions known as transitional distributions 𝑃𝑗  defined as: 

 

                                                                        𝑃𝑗 ∝ 𝑃(𝜃|𝑀) ⋅ 𝑃(𝐷|𝜃, 𝑀)𝛽𝑗                                   (11) 

 
where 𝑗 ≥ 0 is the sampling iteration number, 𝛽𝑗 is the tempering parameter such that 0 = 𝛽0 < 𝛽1 < ⋯ < 𝛽𝑚−1 < 𝛽𝑚 = 1, 

and 𝑚 is the final iteration number. Readers may refer to [11] for further details on the algorithm and implementation of the 

TEMCMC sampler. 

 

II.B. Probability Bounds Analysis With Uncertain Boolean Logic 

 

       For the research work, only the Boolean “AND” and “OR” logical operations of the fault-tree are of interest and, hence, 

discussed in the section. Consider 𝑛 distinct events of the fault-tree denoted as 𝑥𝑖 with an associated probability 𝑃(𝑥𝑖) = 𝑝𝑖 , 

for 𝑖 = 1, … , 𝑛. In the interest of the research undertaken here, the probabilities 𝑝𝑖  are characterised by a probability-box (p-

box) [13] to express its associated polymorphic uncertainty such that: 𝑝𝑖  ~ [𝑝𝑖
𝐿 , 𝑝𝑖

𝑅], where 𝑝𝑖
𝐿 and 𝑝𝑖

𝑅 are the left and right-

bounding distributional envelope of the p-box respectively. 

Under the independence assumption, the resulting associated probability of the event defined by the Boolean “AND” 

logical operation between the events 𝑥𝑖 follows [14]: 

     

                                                               𝑃(⋀ 𝑥𝑖
𝑛
𝑖=1 ) = ∏ 𝑝𝑖

𝑛
𝑖=1 = [∏ 𝑝𝑖

𝐿𝑛
𝑖=1 , ∏ 𝑝𝑖

𝑅𝑛
𝑖=1 ]                     (12) 

 
while the resulting associated probability of the event by the Boolean “OR” logical operation between the events 𝑥𝑖 follows 

[14]:   

 

                                   𝑃(⋁ 𝑥𝑖
𝑛
𝑖=1 ) = 1 − ∏ (1 − 𝑝𝑖)𝑛

𝑖=1 = [1 − ∏ (1 − 𝑝𝑖
𝐿)𝑛

𝑖=1 , 1 − ∏ (1 − 𝑝𝑖
𝑅)𝑛

𝑖=1 ]        (13) 

 
In general, the individual events 𝑥𝑖 may not be independent from one another. Instead, some form of dependency may exist 

between them. To provide for a relatively conservative yet robust risk analysis, the element of event dependency can be treated 

as an epistemic entity. Under the uncertain dependency between the 𝑛 input p-boxes 𝑃𝑖(𝑥) ~ [𝑃𝑖
𝐿(𝑥), 𝑃𝑖

𝑅(𝑥)] for 𝑖 = 1, … , 𝑛, 

the output imprecise distribution is defined as: 

 

                                                                               𝑃(𝑥) = [𝑃𝐿(𝑥), 𝑃𝑅(𝑥)]                                               (14) 

 
Such that in the case of the Boolean “AND” logical operation between the events 𝑥𝑖, the bounds are [15]: 

 

                                                         𝑃𝐿(𝑥) = sup
𝑥=⋀ 𝑧𝑖

𝑛
𝑖=1

[max(0, ∑ 𝑃𝑖
𝐿(𝑧𝑖) − (𝑛 − 1)𝑛

𝑖=1 )]                   (15a) 

                                           𝑃𝑅(𝑥) = inf
𝑥=⋀ 𝑧𝑖

𝑛
𝑖=1

[∑ 𝑃𝑖
𝑅(𝑧𝑖)𝑛

𝑖=1 −  max(0, ∑ 𝑃𝑖
𝑅(𝑧𝑖) − (𝑛 − 1)𝑛

𝑖=1 )]      (15b) 

 
whereas in the case of the Boolean “OR” logical operation between the events 𝑥𝑖, the bounds follow [15]:  

 

                                                       𝑃𝐿(𝑥) = sup
𝑥=⋁ 𝑧𝑖

𝑛
𝑖=1

[∑ 𝑃𝑖
𝐿(𝑧𝑖) −𝑛

𝑖=1 min(1, ∑ 𝑃𝑖
𝐿(𝑧𝑖)𝑛

𝑖=1 )]                   (16a) 

                                                                    𝑃𝑅(𝑥) = inf
𝑥=⋁ 𝑧𝑖

𝑛
𝑖=1

[min(1, ∑ 𝑃𝑖
𝑅(𝑧𝑖)𝑛

𝑖=1 )]                   (16b) 

 
It is to be highlighted that the proposed conservative risk analysis under uncertain event dependencies is currently applicable 

when there are no repeated variables (i.e., repeated basic events of a fault-tree). Such challenge is discussed in [14] and remains 

an open research question.  

 

       The proposed methodology is outlined as follows: The entropy-based affine-invariant stochastic model updating 

framework is implemented to probabilistically update a given distribution model over an Empirical Cumulative Distribution 
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Function (ECDF) of 𝑝𝑖  based on the limited experimental data. This yields a p-box over 𝑝𝑖  to account for the epistemic 

uncertainty over the distribution shape parameters. This is done for each root event. From there, the resulting p-boxes across 

all the root events are propagated through the Boolean logic, while accounting for the uncertain event dependencies, to yield 

the output p-box for the Top event. In summary, a flow-chart is presented in Fig. 1. 

 

 

 
FIGURE 1. Flow-chart Of The Proposed Methodology 

 

III. CASE STUDY - THAI RESEARCH REACTOR-1/MODIFICATION 1 

 

The case study is based on the TRR-1/M1, which is a Training, Research, Isotopes, General Atomics nuclear research 

reactor located within Thailand, and is operated by the Thailand Institute of Nuclear Technology [2]. Since reaching criticality 

on 7-NOV-1977, the TRR-1/M1 nuclear research reactor operates at a normal operating power of 1MW with a maximum 

licensed power at 1.3 MW [2]. During normal operations, the research reactor generates radioisotopes for industrial, medical,  

and agricultural purposes. On top of that, these radioisotopes have also been used to conduct various beam experiments, neutron 

radiography, and the prompt-gamma neutron activation analysis. The schematic diagram of the research reactor is provided in 

Fig. 2.  

 

III.A. Problem Set-up 

 

The Top event of interest for the fault-tree analysis is the “reversed flow of the water within the inlet system”, for which 

the imprecise probability distribution is to be obtained via the proposed methodology. The corresponding fault-tree is illustrated 

in Fig. 3, and details on the respective intermediate and basic events are presented in Table 1. The failure probability data for 

the associated basic events of the fault-tree is obtained from Vechgama et al. (2021) [2], and presented in Table 2. 

 

 
FIGURE 2. Schematic Diagram Of The TRR-1/M1 Research Reactor Adopted From Vechgama et al. (2021) [2]. 
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In the case of the basic events 1, 3, 5, and 6, the distribution on the failure probability 𝑝𝑓 refers to the stochastic variability 

(i.e., aleatory uncertainty) of the component’s reliability [14]. To simulate the case where there is limited component reliability 

data due to the limited reliability/life tests, the work shall consider 𝑁obs = 20 observations on the 𝑝𝑓 for the aforementioned 

basic events. The resulting ECDF on the 𝑝𝑓 for the corresponding basic events are presented in Fig. 5. 

 

 
FIGURE 3. Fault-tree Diagram For The Top Event – Reversed Flow Of The Water Inlet System 

 

TABLE 1. Details On The Respective Events Of The Fault-Tree Presented In Fig. 3 

Intermediate events Basic events 

Symbol Description Symbol Description 

E1 Reversed flow of the water within the inlet system. 1 Valve V-3 failed to open. 

E2a Inlet valve failed to open. 2 Operator failed to open valve V-3. 

E2b Inlet pipe breaks. 3 Valve V-4 failed to open. 

E3a Valve V-3 failed. 4 Operator failed to open valve V-4. 

E3b Valve V-4 failed. 5 Inlet pipe of V-3 breaks. 

  6 Inlet pipe of V-4 breaks. 

 

To calibrate a probability distribution over the component reliability data ECDF for basic events 1, 3, 5, and 6, a Beta 

distribution is chosen due to such distribution having defined bounds between 0 and 1, and having sufficient degrees of freedom 

in characterising different distributional shapes. Next, the entropy-based affine-invariant stochastic model updating framework 

is implemented to update the Beta distribution over the respective ECDF where the inferred parameters are as follows: 𝜽 =
{𝛼𝑖 , 𝛽𝑖}, for 𝑖 = 1, 3, 5, 6. For each inferred parameter, the prior is defined by a Uniform distribution with the corresponding 

bounds defined in Table 3. The likelihood is defined by Eq. (3) with the corresponding width parameter 𝜀 defined in Table 3. 

The choice of 𝜀 is to ensure that the TEMCMC sampler samples from the posterior over 7 sampling iterations to achieve 

convergence over the posterior sample distribution. 

 

TABLE 2. Failure Probability Data For The Associated Basic Events Of The Fault-tree Presented In Fig. 3 

Symbol Description Distribution Shape parameters 

1 Valve V-3 failed to open. Beta 𝛼1 = 1.5,   𝛽1 = 43.00 

2 Operator failed to open valve V-3. Fixed value 3.45 × 10−5 per reactor year 

3 Valve V-4 failed to open. Beta 𝛼3 = 1.5,   𝛽3 = 43.00 

4 Operator failed to open valve V-4. Fixed value 3.45 × 10−5 per reactor year 

5 Inlet pipe of V-3 breaks. Beta 𝛼5 = 1.5,   𝛽5 = 62.40 

6 Inlet pipe of V-4 breaks. Beta 𝛼6 = 1.5,   𝛽6 = 62.40 

 

 TABLE 3. Parametric Settings Implemented For The Stochastic Model Updating Step 

Basic event 1 3 5 6 

Prior bounds 𝛼 [0.01, 100] [0.01, 100] [0.01, 100] [0.01, 100] 
Prior bounds 𝛽 [0.01, 100] [0.01, 100] [0.01, 100] [0.01, 100] 
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Width parameter, 𝜀 0.015 0.015 0.015 0.010 

 

III.B. Results And Discussions 

 

The resulting posterior distribution for the respective inferred parameter is illustrated in Fig. 4, which is also interpreted 

as a fuzzy set [17]. From each fuzzy set, the resulting updated epistemic bound over the inferred parameter is obtained at an 

alpha-cut level of 0.8 to ensure a non-conservative coverage which encloses the true value. The resulting updated epistemic 

bound for the respective inferred parameter is presented in Table 4. 

 

 
FIGURE 4. Resulting Beta Distribution P-box Over The ECDF Of The Component Reliability Data 

 

TABLE 4. Results From The Stochastic Model Updating Step 

Basic event 1 3 5 6 

Updated bounds 𝛼 [0.992, 1.950] [1.326, 2.228] [1.283, 1.843] [1.129, 1.960] 
Updated bounds 𝛽 [32.764, 49.039] [36.713, 54.261] [43.715, 72.931] [54.029, 72.905] 

        

       Based on the results in Table 4, a p-box is constructed over the failure probability 𝑝𝑓 for the basic events 1, 3, 5, and 6. 

This is done via a Double-loop Monte Carlo approach where the outer loop generates 𝑁𝑒 = 1000 samples from the epistemic 

bounds, while the inner loop generates 𝑁𝑎 = 10000 samples from the resulting Beta distribution given the input realization 

from the outer loop. The creates a family of Beta distributions from which the distributional bounds are obtained and presented 

in Fig. 5. From there, the resulting p-box is propagated through the fault-tree in Fig. 3 under: 1) the independence assumption 

between the events (i.e., see Eq. (12) to (13)); and 2) under uncertain event dependency (i.e., see Eq. (15a) to (16b)). The results 

are illustrated in Fig. 6 which shows that under the independence assumption between events, the risk estimates of the Top 

event could be significantly underestimated, whereas that under the uncertain event dependency provides a conservative 

imprecise risk estimates but one that accounts for the worst-case scenario and the true risk of the Top event. Both resulting p-

boxes enclose the true distribution (in black) as seen in Fig. 6 which verifies the applicability of the proposed methodology. 

The latter is obtained by propagating the true probability distribution and probability values (i.e., presented in Table 2) through 

the fault-tree under the independence assumption. 
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FIGURE 5. Resulting Posterior Distributions Over The Inferred Parameters 

 

 

 
FIGURE 6. Resulting P-box Over The Top Event Under The Different Event Dependency Assumptions 

 

IV. CONCLUSIONS 

 

The paper proposed a two-step approach towards performing a robust fault-tree analysis under limited data and uncertain 

event dependence. The validity and feasibility of the proposed framework is demonstrated in computing the probability 

distribution for the reversed flow of the water within the inlet system within the TRIGA nuclear research reactor. The results 

support the hypothesis, and is shown to be consistent with what is expected in reality. A key selling point of the proposed 

methodology is that it is not reactor specific and can be applied towards any reactor design of interest. In fact, large conventional 

reactors such as pressurized water reactors can benefit from the proposed methodology given its relative system configuration 

complexity which presents significant epistemic uncertainty over the failure dependencies between its components. Future 

research efforts can be invested towards investigating the following: 1) a distribution-free approach towards performing such 

analysis with distribution-free probability boxes, aimed at eliminating the element of model form uncertainty; and 2) to 

investigate the simultaneous use of both confidence box and probability box to perform a fault-tree analysis, and provide a 

statistical interpretation over the resulting statistical structure associated with the Top event probability.  

The MATLAB and R codes used to perform the analysis in the paper are made publicly available on GitHub via: 

https://github.com/Adolphus8/stochastic-model-updating.git  

 

 

https://github.com/Adolphus8/stochastic-model-updating.git
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