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ABSTRACT 

 

        Early detection of structural damage in nuclear reactor buildings is crucial for safety. In this study, we propose a Bayesian 

inference framework to detect anomalies, pinpoint damage locations, and quantify damage severity using multi‐degree‐of‐

freedom response data. Response analyses under both normal and damaged stiffness conditions yield peak acceleration, 

velocity, and displacement metrics for each layer. Normalized likelihood functions based on these peak values are used to 

compute abnormality probabilities via Bayes’ theorem. A Bayesian network fuses layer‐wise detection results to infer which 

stiffness element is compromised. Sequential Bayesian updates using shifts in natural periods enable estimation of damage 

extent (10–40 % stiffness loss).Validation of a three–layer mass–spring–damper model under El-Centro seismic input shows 

accurate anomaly detection and damage inference across various scenarios. These results demonstrate the promise of Bayesian 

approaches for structural health monitoring in nuclear reactors. 

Keywords: Bayes’ theorem, Anomaly detection, Seismic damage, Bayesian inference. 

 

I.BACKGROUND  

 

In the field of nuclear engineering, a multi-degree-of-freedom structural analysis method is used for the assessment of 

damage to buildings. It is also conceivable that damage to structures caused by earthquakes can occur in forms that are not 

visible, such as internal damage. If damage to the structure is not detected before it is further damaged by aftershocks, it can 

lead to a major accident. Therefore, early detection is important for improving the safety of nuclear reactor systems. As such, 

it is necessary to detect damage by interpreting changes in the behavior of structures using response data from multi-degree-

of-freedom structural analysis. 

This study aims to construct a model that can estimate the presence and location of damage caused by earthquakes. It does 

so by conducting multi-degree-of-freedom structural analysis on nuclear reactor buildings and implementing Bayesian 

inference using response analysis data from both normal conditions and when damage occurs due to earthquakes. 

 

II. ANALITICAL MODEL USING MASS-SPRING-DAMPER STRUCTURE 

II. A Analytical Condition 

  

In a three-layer structure, multi-degree-of-freedom response analysis was conducted and validated. Specifically, 

comparisons were made between normal and abnormal (structural damage) conditions for each layer based on response 

acceleration, response velocity, and response displacement obtained from the results of the multi-degree-of-freedom response 

analysis. The multi-degree-of-freedom response analysis involves solving the following differential equation to determine the 

response acceleration, response velocity, and response displacement[1]. 

 

                       

[𝑀]
𝑑2{𝑥}

𝑑𝑡2
+ [𝐶]

𝑑{𝑥}

𝑑𝑡
+ [𝐾]{𝑥} = −[𝑀]{𝐼}

𝑑2𝜙

𝑑𝑡2
 （1） 

 
 

The natural period T can be calculated from the following formula. 
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𝑑𝑒𝑡(−𝜔2[𝑀] + [𝐾]) =0,  𝑇 =
2𝜋

𝜔
 （2） 

 
 

In this study, structural damage is assumed to involve a decrease in stiffness at each layer, with the degree of 

damage varying in increments of 10%, ranging from 10% to 40% in the scenarios considered. Table 1 shows 

analytical conditions[2]. 

 
 

Table 1 The settings for a multi-degree-of-freedom response analysis 

Variable Name Contents Value Unit 

m1 Mass of Lv1 4.0×105 [kN] 

m2 Mass of Lv2 4.0×105 [kN] 

m3 Mass of Lv3 3.0×105 [kN] 

k1 Stiffness of Lv1 2.48×103 [kN/cm2] 

k2 Stiffness of Lv2 2.48×103 [kN/cm2] 

k3 Stiffness of Lv3 2.48×103 [kN/cm2] 
 
 

The model diagram used for the analysis is as follows. In the multi-degree-of-freedom response analysis, the 

seismic input was the El-Centro NS wave. The waveform is shown below[3]. 

 

 
Figure 1 The El-Centro NS wave acceleration 
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Figure 2 Model overview 

 

The overview of the estimation method used in this study is referred to as the "modular type," which we have 

named. The specific method is as follows: 

 

1. Conduct a multi-degree-of-freedom response analysis to obtain the response acceleration, velocity, and 

displacement for each layer, and compare these to normal values to determine if they are normal or abnormal 

using Bayesian estimation. 

2. If abnormalities are detected, use a Bayesian network to identify the affected layer and estimate the location of 

stiffness damage throughout the system. 

3. Employ the natural periods derived from the response analysis in Bayesian estimation to evaluate the extent of 

damage at the identified locations. 

 

II.B Comparison of Seismic Response Analytical Result between Normal and Abnormal condition 

The graphs of the response acceleration, response velocity, and response displacement obtained from the multi-

degree-of-freedom response analysis are shown below. 

 

 
Figure 3 Response velocity at normal condition 
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Figure 4 Response velocity  at k1 30% damage 

 

Figures 3 and 4 display the response acceleration data for the first layer under normal and abnormal conditions, 

respectively. It can be observed that there are differences in the magnitude of values and the times at which these 

values occur between normal and abnormal conditions.  

 

 

Figure 5 Velocity normal and k1 30% damaged 

 
Figure 6 Comparison between normal and abnormal 

 

When defining a positive interval [a, b] in the data during normal conditions, there exists one maximum value within 

that interval. However, when abnormalities occur, it is thought that there may be shifts in the size of this maximum 
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value and the timing of their appearance. Focusing on the first layer, the results displaying overlaid data from both 

abnormal and normal conditions, as shown in Figure 6, are presented below. 

In the response acceleration data, it can be confirmed that there are differences in the magnitudes of values and the 

times at which these values appear between normal and abnormal conditions. It has also been confirmed that similar 

differences exist in the response velocity and response displacement. Indeed, differences exist between normal and 

abnormal conditions in terms of the average magnitudes of maximum values and the times at which these maximum 

values occur. Focusing on these differences, a method for assessing the presence or absence of abnormalities has 

been investigated. 

Here, the comparison between normal and abnormal conditions in terms of the average peak values (peak average) 

of acceleration, velocity, and displacement data for layers 1 through 3 is shown. The differences were scored and 

classified into four levels (3, 2, 1, 0). The results are presented in Table 2. This approach allows us to identify which 

values exhibit significant changes and which exhibit minor changes for each type of damage.  
 

Table 2 Evaluation of the differences compared to normal and abnormal conditions 

  Lv1 Lv2 Lv3 

Peak 

Average 

 Acc Vel Dis Acc Vel Dis Acc Vel Dis 

k1 0 3 3 2 3 3 3 2 3 

k2 2 2 2 3 3 3 3 3 3 

k3 2 2 1 2 1 2 0 0 3 

 

 

III. BAYESIAN INFERENCE ON ANOMALY DETECTION  

III. A Bayesian Theorem 

Bayesian theory is based on Bayes' theorem, which is represented by the following formula: 

 

 

𝑷(𝑺𝒏|𝑯𝒏) =
𝑷(𝑺𝒏)𝑷(𝑯𝒏|𝑺𝒏)

∑ 𝑷(𝑺𝒎)𝑷(𝑯𝒎|𝑺𝒎)𝒎

 （3） 

 

 

Posterior Probability, 𝑷(𝑺𝒏|𝑯𝒏): The probability of hypothesis 𝑯𝒏 given the observed event 𝑺𝒏, inferred after 

evaluating the evidence. 

Prior Probability, 𝑷(𝑺𝒏): The initial probability of hypothesis 𝑺𝒏 before new evidence, representing our preliminary 

belief. 

Likelihood, 𝑷(𝑯𝒏|𝑺𝒏): The probability of observing 𝑺𝒏 assuming 𝑯𝒏 is true, used to update our belief based on 

new data. 

When an earthquake occurs and seismic acceleration data along with the building's response data are obtained, a 

multi-degree-of-freedom response analysis of the building is performed using the acquired seismic acceleration 

data. The analysis results are then compared to the building's response data, and this comparison is incorporated 

into the likelihood function.  

The Bayesian formula for evaluating the presence or absence of abnormalities can be expressed as follows: 

 

𝑷(𝑨𝒃𝒏𝒐𝒓𝒎𝒂𝒍|𝑫𝒂𝒕𝒂)＝𝑷(𝑨𝒃𝒏𝒐𝒓𝒎𝒂𝒍)
𝑷(𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅 𝑫𝒂𝒕𝒂|𝑨𝒃𝒏𝒐𝒓𝒎𝒂𝒍)

𝑷(𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅 𝑫𝒂𝒕𝒂)
 （4） 

 

The observed data refers to the data obtained from the response analysis results (the average of the interval 

maximum values). The probability 𝑃(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐷𝑎𝑡𝑎) can be calculated as follows: 
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For normal conditions, it is as follows. 

 

 

𝑷(𝑵𝒐𝒓𝒎𝒂𝒍|𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅 𝑫𝒂𝒕𝒂)＝𝐏(𝑵𝒐𝒓𝒎𝒂𝒍)
𝐏(𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅 𝑫𝒂𝒕𝒂|𝑵𝒐𝒓𝒎𝒂𝒍)

𝐏(𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅 𝑫𝒂𝒕𝒂)
 （6） 

 

Here, the two important likelihoods in Bayesian estimation are defined as follows. 

First, a normal distribution is determined using the mean and standard deviation of the maximum value data 

measured under normal condition. The normal distribution is then adjusted so that the peak density value is 1, and 

this adjusted distribution is used as the likelihood function. This likelihood function calculates the average of the 

interval maximum values under certain conditions. The closer this average is to the mean of the interval maximum 

values under normal conditions, the closer the likelihood value is to 1. Conversely, the further away the average is, 

the smaller the likelihood value becomes. For the likelihood related to abnormalities, a similar definition is used. 

The mean of the observed data at each abnormal location (k1, k2, k3) is determined, and then a normal distribution 

is established using this mean and standard deviation. By adjusting the probability density function so that its 

maximum value is 1, this function becomes the likelihood function representing the degree of abnormality of the 

observed data.  

 

III. B Parameters for Bayesian Inference 

The likelihood is a necessary value for estimation using Bayesian theory, representing the confidence level of 

observing event 𝑺𝒏  under the condition that cause 𝑯𝒏  has occurred. In this study, the likelihood function was 

created based on a normal distribution as previously described. An example of the created likelihood function is 

shown below. 

𝑷 = 𝐞𝐱𝐩 (−
(𝒙 − 𝝁)𝟐

𝟐𝝈𝟐
) 

 

 
 

Figure 7 The likelihood function created from the Level 1 response acceleration 
 
Bayesian estimation was conducted on acceleration, velocity, and displacement data using these likelihood 

functions and equations (3) to (6). Due to the difficulty in obtaining precise prior probabilities 𝑃(𝑁𝑜𝑟𝑚𝑎𝑙) and 

𝑃(𝐴𝑏𝑜𝑟𝑚𝑎𝑙), a uniform distribution was assumed, assigning each a value of 0.5. For abnormalities, given scenarios 

𝑷(𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅 𝑫𝒂𝒕𝒂)＝𝑷(𝑵𝒐𝒓𝒎𝒂𝒍)𝑷(𝑵𝒐𝒓𝒎𝒂𝒍|𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅 𝑫𝒂𝒕𝒂) 

＋∑ 𝐏(𝑨𝒃𝒏𝒐𝒓𝒎𝒂𝒍𝒊)

𝑵

𝒊=𝟏

𝐏(𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅 𝑫𝒂𝒕𝒂|𝑨𝒃𝒏𝒐𝒓𝒎𝒂𝒍𝒊) 
（5） 
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involving damages k1, k2, and k3, the prior probability of 0.5 was further divided by 3, resulting in equal prior 

probabilities for each damage scenario. 

 
 
III.C Bayesian Inference on anomaly detection 

Table 3 shows the abnormality degree of the system using the average peak values of acceleration data measured 

under the assumed damage conditions for each layer. An abnormality degree of 0.5 or higher indicates a correct 

evaluation result. The evaluation results show that, under certain conditions, the abnormality degree falls below 0.5. 

This occurs because the data measured under abnormal conditions are similar to the data from normal conditions, 

leading to the data being mistakenly classified as normal rather than abnormal. This abnormality degree was used 

as evidence in the Bayesian network explained in the next chapter to evaluate whether each layer shows abnormal 

values or not. 
 

Table 3 abnormality degree of acceleration data at each level 

  Scenario 

  10% 20% 30% 40% 

Abnormality k1 0.41 0.47 0.42 0.46 

k2 0.79 0.74 0.98 1.00 

k3 0.43 0.89 0.76 0.76 

IV BAYESIAN NETWORK ANALYSIS ON ANOMALY DETECTION  

IV.A Bayesian Network Structure 

 

Bayesian network is a method that integrates the causal relationships between multiple causative events and 

outcomes, estimating based on conditional probabilities[4].  

 

 
Figure 8 Structure of Bayesian Network 

 

In this study, the difference in abnormality detection involves using acceleration, velocity, and displacement data 

obtained from each layer for estimation, while damage location estimation uses the acceleration, velocity, and 

displacement data from all layers for estimation. 
 
IV.B Parameters of Bayesian Network Analysis 

In a Bayesian network, conditional probabilities are used to integrate the causal relationships between multiple 

causative events and outcomes, and estimates are made based on these probabilities. These conditional probabilities 

are set according to the causal relationships of the outcomes. 
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Below is the probability table summarizing the conditional probabilities for the first layer response velocity. By 

incorporating these probabilities into the network structure, it becomes possible to estimate the layer indicating an 

abnormality. 
 

Table 4 Bayesian Network probability table at Lv1 ACC 

Lv1 Normal Abnormal 

Seismic damage k1 k2 k3 k1 k2 k3 

Normal 0.9 0.9 0.9 0.1 0.25 0.25 

Abnormal 0.1 0.1 0.1 0.9 0.75 0.75 
 

This table summarizes the conditional probabilities for the first layer response acceleration. When Lv1 shows 

normal values and there is no structural damage, it is considered highly probable that k1, k2, and k3 will also show 

normal values. Therefore, the confidence level for Normal is set at 0.9, and for Abnormal, it is set at 0.1. On the 

other hand, when Lv1 shows abnormal values, it is considered highly probable that k1, k2, and k3 will also show 

abnormal values. Therefore, the confidence level for Abnormal is set higher. In Table 4, parameters that are more 

likely to change have been assigned a higher confidence level for indicating abnormalities. Specifically, the 

confidence levels for indicating abnormality were set as follows: 0.9 for 3 points, 0.75 for 2 points, 0.6 for 1 point, 

and 0.5 for 0 points. In the first layer response velocity, as shown in Table 1, k1 has 3 points, and k2 and k3 have 2 

points.  

IV.C Bayesian Inference on Damage Location  

Next, we present the results summarizing the posterior probabilities estimated by integrating acceleration data using 

the Bayesian network. From these results, it was confirmed that when the true scenario involved k1 and k2 with 

10% to 40% damage, and k3 with 20%, 30%, and 40% damage, the posterior probabilities for each layer exceeded 

0.5, accurately estimating the presence of abnormalities. However, when the true scenario involved k3 with 10% 

damage, the posterior probabilities for each layer were below 0.5, failing to accurately estimate the abnormalities.  
 

Table 5 The posterior probabilities estimating the Layer Showing Abnormalities at k1 

  True Scenario 

  k1 

  10% 20% 30% 40% 

Estimation 

result 

Lv1 0.84 0.99 0.99 0.99 

Lv2 0.61 0.91 0.98 1 

Lv3 0.96 1 1 1 
 
Here are the results of using a Bayesian network to estimate damage locations. The table shows the true scenarios 

and includes the posterior probabilities derived from the results: 
 

Table 6 The Damage Location posterior probabilities estimated by acceleration 

  True Scenario 

  k1 

  10% 20% 30% 40% 

Estimation 

result 

k1 0.39 0.5 0.47 0.49 

k2 0.35 0.4 0.43 0.34 

k3 0.26 0.1 0.1 0.1 

 

When the true scenarios involved damages of 10% to 40% for k1 and k2, and 10% and 20% for k3, it was confirmed 

that the posterior probabilities for these true scenarios were higher than those for other scenarios, indicating accurate 

estimations. Furthermore, for true scenarios such as 20% damage in k1, 30% and 40% damage in k2, and 10% 
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damage in k3, the posterior probabilities were above 0.5, confirming that the estimations were made with high 

accuracy. 

 

IV.D Bayesian Inference of Degree of Damage 

In this section, we estimate the extent of damage in a three-layer structure where an abnormality has been identified 

and the damage location is known. The values used for this estimation are based on the natural periods, and Bayesian 

estimation is employed to determine which damage severity scenario is most plausible. 

The likelihood functions are created using the same method as the abnormality detection technique, and scenarios 

of 10% to 40% damage for k1 to k3 are evaluated. Below, we present the likelihood functions for T1 to T3 used for 

k1 damage, along with an overview of the model used for estimating the damage severity. 
 

 
Figure 9 Estimation steps for degree estimation 

 

The estimation steps are as follows: 

1. Initial Prior Probability: Set a uniform initial prior probability of 0.25 for each damage scenario (10%, 20%, 30%, 

40% for k1, k2, and k3). 

2. Sequential Estimations: Perform estimations using the primary (T1), secondary (T2), and tertiary (T3) natural 

periods, sequentially updating the prior probabilities with the posterior probabilities from the previous step. 

3. Final Posterior Probability: Use the posterior probabilities from the tertiary period estimation as the final values 

for each damage level scenario. 

 

Table 7 Final posterior probability from degree of damage estimation 

  True Scenario 

  10% 20% 30% 40% 

Final 

posterior 

probability 

k1 0.77 0.69 0.80 0.91 

k2 0.81 0.63 0.71 0.81 

k3 0.77 0.68 0.78 0.89 

      
 
The above summarizes the results of estimating the degree of damage. As shown in the table, all estimation results 

exceed 0.5, indicating successful estimation for all damage levels. From these results, it is evident that a method for 

accurately estimating the damage severity has been established. 
 

IV. CONCLUSIONS 
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In this study, we examined a Bayesian inference model to estimate the presence, location, and severity of 

abnormalities in a system using multi-degree-of-freedom response analysis. 

For the three-layer model, Bayesian estimation was used to evaluate the presence of abnormalities in each layer 

when stiffness decreased. The results showed that for Lv1 and Lv2, the model accurately estimated the presence of 

abnormalities for k1, k2, and k3 under 10% to 40% damage. For Lv3, the model accurately estimated the presence 

of abnormalities for k1 and k2 under 10% to 40% damage, and for k3 under 30% and 40% damage. 

Additionally, a Bayesian network model was constructed to estimate the damage location when abnormalities were 

detected in each layer. The results showed that the model accurately estimated the damage location for k1 and k2 

under 10% to 40% damage scenarios. For k3, the model accurately estimated the damage location under 10% and 

20% damage scenarios. Furthermore, Bayesian estimation using the natural periods was conducted to estimate the 

damage severity. It was confirmed that the model accurately estimated the damage severity for k1, k2, and k3 under 

all scenarios from 10% to 40%. 

The evaluation results indicated some errors in the estimation for Lv3 k3 under 10% and 20% damage in abnormal 

detection, and for Lv3 k3 under 30% and 40% damage in damage location estimation. To improve this, it is 

necessary to develop estimation methods that can handle smaller damage levels. 

In the future, to achieve more accurate estimations, we will explore and implement the use of machine learning to 

define the likelihood functions. 
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