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ABSTRACT

Earthquakes are a significant contributor to the risk of nuclear power plants in Japan. An earthquake has the potential to
cause simultanecous damage to multiple redundant components, and seismic probabilistic risk assessment quantitatively
addresses such a risk. While several approaches have been proposed to estimate the mean value of the seismically induced joint
failure probability of multiple components, the propagation of its uncertainty remains an unresolved issue that requires further
investigation. This paper addresses this issue and proposes a technique to propagate the uncertainty of the seismically induced
joint failure probability of multiple components. First, we review one of the major failure criteria in seismic probabilistic risk
assessment. Then, we discuss how to convert this failure criterion into the mean value of the joint failure probability of multiple
components. We develop a simple Monte Carlo technique to propagate the uncertainty of the seismic joint failure probability.
We provide a numerical demonstration of the proposed technique, showing that the mean value obtained from the constructed
distribution of joint failure probability agrees with the expected mean value derived from the multivariate normal model. The
proposed algorithm enables uncertainty analysis of the seismically induced joint failure probability of multiple components.

Keywords: Seismically induced joint failure probability, Probability density function, Monte Carlo simulation, Uncertainty
analysis, Seismic probabilistic risk assessment

L. INTRODUCTION

Earthquakes are considered one of the major risk contributors to nuclear power plants. For example, several nuclear power
plants, such as North Anna Nuclear Power Station, experienced earthquakes resulting in reactor scrams [1]. In the Fukushima
Daiichi nuclear power plant accident, the 2011 Tohoku earthquake and tsunami caused core damage at three units [2]. Thus,
operational experience of nuclear power plants demonstrates the need to account for seismic risks in nuclear power plants.

Seismic Probabilistic Risk Assessment (PRA) is a tool that can quantify the seismic risk of nuclear power plants. Seismic
PRA estimates risk metrics, such as the core damage frequency of a unit due to an earthquake. There are several challenges in
seismic PRA. Seismic fragility analysis (hereinafter referred to as fragility analysis) also presents a challenge in estimating the
seismically induced joint failure probability (hereinafter referred to as joint failure probability) of structures, systems, and
components (SSCs).

Fragility analysis has two challenging issues. The first issue is the lack of a consensus method to estimate correlation
coefficients between seismic responses and between seismic capacities. Researchers have investigated how to estimate these
correlation coefficients and their effect on the joint failure probability[3—6]. Given these correlation coefficients, fragility
analysts can estimate the mean value of joint failure probability [7]. The multivariate normal (MVN) model is one such
model, and there is an efficient algorithm to evaluate this model [8,9]. The second issue is that no method exists to propagate
the uncertainty of joint failure probability. To the best of the authors’ knowledge, there are no previous studies that
investigate how to construct and propagate the uncertainty of joint failure probability, thus representing a significant
methodological gap in the field.

In this paper, we address the second issue by proposing a simple Monte Carlo technique for sampling joint failure
probabilities. Using the proposed technique enables fragility analysts to construct the uncertainty distribution of a joint failure
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probability. In Section II, we briefly review a major failure criterion for a single SSC used in seismic PRA. Then, we extend
this failure criterion to multiple SSCs. In Section III, we introduce a Monte Carlo technique to sample a seismically induced
joint failure probability. In Section IV, we apply the proposed technique to a three-SSC case by propagating their epistemic
uncertainties and compare its estimated mean value to that of the MVN model. In Section V, we discuss both advantages and
disadvantages of the proposed techniques. Finally, in Section VI, we conclude this study.

The proposed simple technique can also be applied to another failure criterion defined in terms of seismic responses and
capacities. Thus, the proposed simple technique is applicable to both failure criteria in seismic PRA.

II. Failure criteria
In Seismic PRA, the most common failure criteria for seismically induced failure of an SSC is given as [10]:
A > A €y€g (D

where A is the peak ground acceleration, 4,, is the peak ground acceleration at which the mean value of response equals the
mean value of capacity, €y is the random variable for epistemic uncertainty, €5 is the random variable for aleatory uncertainty
[7].

It is common to assume that €;;, and €z follow lognormal distributions expressed as

ey~LN (0, By) (2)
er~LN (0, Br) 3)

where f;, and [ are the logarithmic standard deviations of epistemic and aleatory uncertainties, respectively.

These failure criteria can be easily extended to simultaneous failures (hereinafter referred to as joint failures) of multiple
SSCs. A common failure criterion must be satisfied simultaneously across all SSCs. For example, the failure criterion for joint
failure of n SSCs can be expressed in a vector form as

m,21€ U €R1

IA‘ > I Aml€U i€Ri |, (4)
Am, nE Un€rn

where A,, ; is the median peak acceleration of the ith SSC, and €;;; and €5 ; are the random variables for epistemic and aleatory

uncertainties of the ith SSC, respectively. When Eq. (4) is satisfied, all SSCs are considered to fail.
Epistemic and aleatory uncertainties are assumed to follow a multivariate lognormal distribution expressed as

€un
€R1
[ : ] = €g~MLN(0,Xg), (6)

where 0 is the zero vector, €y and €g are the vectors of random variables for aleatory and epistemic uncertainties, respectively,
and Xy and Xp are the covariance matrices of aleatory and epistemic uncertainties. Note that these covariance matrices are
expressed in terms of correlation matrices given as Xy = diag(By)pydiag(By) and Lx = diag(Br)prdiag(Br), where By
and By are the vectors of epistemic and aleatory uncertainties, respectively and py and pg are the correlation matrices of
epistemic and aleatory uncertainties, respectively.

III. MONTE CARLO TECHNIQUE TO SAMPLE JOINT FAILURE PROBABILITY



%S RAM2025 Asian Symposium on Risk Assessment and Management 2025

www.asram2025.org Pattaya, Thailand, 27 — 29 August 2025

In this section, we propose a Monte Carlo technique to sample the seismically induced joint failure probability of n SSCs.
First, we develop a Monte Carlo technique for a single SSC, which is then extended to n SSCs.

IIL.A. Monte Carlo technique for a single SSC

In this section, we propose a Monte Carlo technique for calculating the seismically induced joint failure probability of a
single SSC. To demonstrate the proposed technique, we focus on the propagation of epistemic uncertainty under the failure
criterion.

Let us take the logarithm of Eq. (1) aslnA > InA4,, + In €y + Inei. The purpose of this transformation is to convert €;
and € to normal distributions. Thus, In €; and In €z follow normal distributions. This step is not mandatory but simplifies
implementation.

In the next step, we sample epistemic uncertainty. Let In €y ; be the jth sampled epistemic uncertainty from a normal
distribution. Note that Monte Carlo simulations do not sample the aleatory uncertainty since the aleatory uncertainty is later
integrated to define a failure probability. Now, one can transform the failure criterion as follows.

InA/Ay, —Iney; > Ineg (7)

Then, the last step is to convert Eq. (7) into a failure probability. In €, follows a normal distribution, and thus, one can obtain
the probability of satisfying Eq. (7) by taking the integration of In €z from o toInA/A,, — In¢€y ;, which is the cumulative
distribution function given as

(8)

InA/A,, —Iney ;
P(InA/A, — Iney ;> Ineg) = d>< /A UJ),

Br
where ®(+) is the cumulative distribution function of a standard normal distribution. Eq. (8) is interpreted as the conditional

failure probability given In € ;. Thus, we can sample failure probability using Eq. (8) and In €, ;. Repeating this sampling can
construct the probability density of failure probability. In Algorithm 1, we summarize the above Monte Carlo technique.

Input: 1. Peak ground acceleration A
2. Median peak ground acceleration A,,
3. Logarithmic standard deviations Sz and Sy
4. Number of the Monte Carlo trials N
Output: = Sampled failure probabilities P
Initialize an empty vector P = {}
{x1, x5, -+, xy} < Draw N samples from N (0, 8;)

1
2
3. For each x; do
4
5

P; < Evaluate Eq. (8) with In€y ; = x;
Append P; to P
6. Return P

Algorithm 1: Monte Carlo procedure to propagate epistemic uncertainty in the seismically induced failure probability of a
single SSC

Note that one can sample In €, using a uniform distribution on [0,1] using the distribution function technique. The
cumulative distribution function of In€y is given by ¢ = ®(In€y/By). Since q is the cumulative value of In€y, we can
consider q follows a uniform distribution on [0,1], and In € is expressed as Ine,; = By, ®~1(p). Then, we can sample the
corresponding In €;; by sampling g. Now, let us assume that q; is the jth sample of q. Now, we get the corresponding jth

sample of In€y asIney ; = ﬁu¢'1(qj). Thus, Eq. (8) is also given as

<1n A/A,, — BUCD_l(qj)>
Br '

P(lnA/Am —Iney;>In ER) =0 9
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For the single-component case, one can also directly sample failure probability using the equation of the fragility curve.
The fragility curve is a function of peak ground acceleration that presents a failure probability [11]. The fragility curve equation
is given as

Fp, A, A, Bu.Br) = (‘“A/ A + /)’u@‘l(q))‘

10
2 (10)
where q is the analyst’s confidence in epistemic uncertainty. Note that one can assume that q follows a uniform distribution.
Thus, one can uniformly sample the value of g to propagate the epistemic uncertainty using Eq. (10).

A noticeable difference between Egs. (9) and (10) is that they have the different signs in front of S ®~2(p). This difference
does not affect their probability density. We first show that Eq. (9) can generate the same probability density function as Eq.
(10). Figure 1 compares the probability densities constructed by Egs. (9) and (10) with 10° samples.

ER — Eq.(9)
— Eq. (10)

Probability density [-]
=Y

. ]

0.0 0.2 0:4 0:6 0.8 10
Failure probability [-]
Figure 1. Comparison of the probability densities constructed by Egs. (9) and (10) with A = 1.05, 4,, = 1.1, By = 0.15, and
Br = 0.12

Figure 1 shows that Egs. (9) and (10) yield identical probability densities even though the signs of In €y, ; in Eq. (8) and
Bu®~1(p) in (10) are opposite. This observation can be explained as follows. ®~1(p) is symmetric at the origin, implying that
®~1(p) and ®~1(—p) have the same values for all p, and consequently, In €; and — In €;; have the same probability density.
Figure 1 confirms we can use Eq. (8) to propagate epistemic uncertainty.

Eq. (8) is easily modified to propagate aleatory uncertainty by swapping how the uncertainties are treated. In the above
derivation, epistemic uncertainty is sampled, and aleatory uncertainty is integrated to transform the inequality into a failure
probability. Instead, we can swap their treatment as the aleatory uncertainty is sampled, and the epistemic uncertainty is
integrated to transform the inequality into failure probability. Let € ; denote the jth sample of aleatory uncertainty. Then, we
can get the following equation:

(11D

P(InA/A, —Ineg; >Ine; = —0) = q)( 5
U

InA/A,, —In eR,j)

where In € ; is the jth sample of aleatory uncertainty. Egs. (8) and (11) have the same functional form, and therefore, we
only need to implement Eq. (8) to evaluate Eq. (11) with different parameters.

II1.B. Algorithm for multiple SSCs

In the previous section, we proposed equations to propagate the uncertainty of seismically induced failure probability, with
a focus on different types of uncertainties. In this section, we propose equations to propagate the uncertainty of the seismically
induced joint failure probability of multiple SSCs. The approach is the same as the single SSC. We first take the logarithm of
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the failure criterion. Then, we transform a failure criterion into failure probability using the symmetric property and the
cumulative distribution function.

Let us consider the failure criterion of Eq. (4) and follow the same steps as the single SSC case. We take the logarithm,
sample the epistemic uncertainty of each SSC, and transform the inequality into the failure probability. Let €, ; ; denote the jth
sample value of epistemic uncertainty of the ith SSC. Now, Eq. (4) is transformed as

InA,, Ineyq; Ineg 4
lnA - lnAml][lneU” >|1neRl] (12)
lnA lnAmn Iney Ineg,
lnA lnEU] lnfR

where 4 is the vector of peak ground accelerations, A, is the vector of median peak ground accelerations, €y ; is the vector of
jth samples of epistemic uncertainties, and €g is the vector of random variables for aleatory uncertainties. Note that In €g
follows a MVN distribution.

Now, let the vector x equal In €g, and we can transform Eq. (12) by taking the cumulative distribution function of an MVN
distribution to the failure probability as

InA-In4;m—Iney,

1 1
P(ll’lA - ll’lAm —In €y, > X = —00) = f Wexp (—ExTZ,;lx) dx. (13)
R

—00

The right-hand side of Eq. (13) is the formula for the cumulative distribution function of an MVN distribution with zero mean
value. Eq. (13) is the conditional failure probability given the jth sampled values of epistemic uncertainties. In the literature,
there is a fast Monte Carlo algorithm to evaluate Eq. (12) proposed by Genz and Bretz' [9]. Thus, using Eq. (13) to propagate
the epistemic uncertainty of failure probability is computationally feasible.

We summarize the steps for propagating epistemic uncertainty using the Monte Carlo sampling technique in Algorithm 1.

Input: = 1. Peak ground acceleration A
2. Vector of median peak ground accelerations 4,,
3. Covariance matrices Xp and Xy
4. Number of the Monte Carlo trials N
Output: = Sampled failure probabilities P
Initialize an empty vector P = {}
{z,,2,,---,2zy} < Draw N samples from M VN (0, Xy)

1
2
3.  Foreachz; do
4
5

P; « Evaluate Eq. (13) with In €, j = z; using Genz-Bretz algorithm
Append P; to P
6. Return P
Algorithm 2: Monte Carlo procedure to propagate epistemic uncertainty in seismically induced joint failure probability

Eq. (13) can be easily modified to propagate aleatory uncertainty. By switching the role of epistemic and aleatory
uncertainties in the above derivation, we get a similar expression for the conditional failure probability given aleatory
uncertainties as

! For example, in Python, the multivariate normal.cdf function in the scipy packages (version 1.14.4) [12] can be used to
evaluate Eq. (13).
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InA-InA;m—Ineg;

P(InA—1nA,, —Ineg; >Iney) = & (—leZ‘1x>dx (14)
R @yl 2 P2

where x equal In €y, and € ; is the vector of the jth samples of aleatory uncertainties. Eq. (14) is the conditional failure

probability given the jth sampled values of epistemic uncertainties.

IV. NUMERICAL EXPERIMENT

In this section, we demonstrate the propagation of epistemic uncertainties using Algorithm 2 for a three-component case.
We summarize parameter values used in this numerical experiment in Table 1, where py and pg are correlation matrices of
epistemic and aleatory uncertainties, respectively, and 8y and B are the vectors whose ith elements are epistemic and aleatory
uncertainties of SSCs, respectively.

Table 1. Input Parameters Employed in the Numerical Demonstration

Parameter Sample value

A 1.0,1.1,1.2

A, [1.05 0.95 1.00]"

Br [0.12 0.09 0.1]

Bu [0.08 0.06 0.07]

Pr [ 1 0.3 0.2]
03 1 04
02 04 1

Pu [ 1 07 0.6]
07 1 0.8
06 08 1

Ip diag(Br)prdiag(Br)

Ly diag(By)pydiag(By)

Figure 2 shows the histograms constructed from 107 generated samples based on the parameter values shown in Table 1.
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Figure 2. Probability densities constructed from 107 samples of joint failure probabilities at 1.0, 1.1, and 1.2

To verify the above result, we evaluate the mean value using the generated joint failure probabilities and comapre it with
an MVN model such that
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InA-In 4y,

_ . B
F= f Qm)"2|Ty + Zg|1/? exp <_§x (Zy + Zp) X) dx. (16)

This MVN model is a variation of a model used in the Seismic Safety Margin Research program [8], and that Eq. (16) has a
different integration domain. In Table 2, we summarize the comparison of estimated mean values.

Table 2. Comparison of the mean estimations between the proposed model and the MVN model

PGA Value Proposed technique
Estimated M;n M((l)nte Carlo error MVN model*
1.0 2.1284e-01 1.4589¢-04 2.1282e-01
1.1 5.1483¢-01 2.2690e-04 5.1482¢-01
1.2 7.7645¢-01 2.7865e-04 7.7644¢-01

* The reported values are obtained using the internal integration function of the SciPy library, scipy.stats. mvn, under
settings that guarantee convergence with absolute and relative errors smaller than 10710,

Table 2 shows that the proposed technique accurately reproduces the mean estimates of joint failure probabilities derived
from the constructed probability densities presented in Figure 2. Thus, this result suggests that the proposed technique can
correctly generate the uncertainty distribution of the seismically induced joint failure probability of SSCs.

V. DISCUSSION

We numerically investigated the proposed technique and demonstrated that it can generate the probability density of joint
failure probability consistent with the MVN model. One obvious advantage of the proposed technique is its simplicity; fragility
analysts can easily implement it. Additionally, the proposed technique does not require any additional parameters to construct
the uncertainty of the joint failure probability, provided that fragility analysts have already estimated the mean value of the
joint failure probability using the MVN model. This is advantageous because fragility analysts do not have to conduct additional
analysis.

Although it is difficult to determine the correlation coefficients between responses and between capacities, it is possible to
assume prior distributions for these coefficients and incorporate the constructed probability density of joint failure probability
as part of the likelihood function. In doing so, fragility analysts can use a Bayesian updating framework to reduce the
uncertainty associated with these correlation coefficients.

As mentioned in the introduction, it is challenging to obtain the correlation coefficients between responses and between
capacities which are required parameters for both the MVN model and the proposed technique. Thus, establishing a
methodology for estimating these correlation coefficients is also an important direction for future research.

A probability density constructed by the proposed technique inevitably includes a Monte Carlo error. This Monte Carlo
error limits the applicability of the proposed technique. For example, it is difficult to obtain accurate gradient information from
a constructed probability density. This inaccuracy makes it difficult to use a gradient-based method, such as a Hamiltonian
Monte Carlo method. Therefore, establishing an analytical method to derive the probability density function is an important
direction for future research.

V. CONCLUSIONS

We proposed a Monte Carlo technique to propagate the uncertainty of seismically induced joint failure probability. The
proposed Monte Carlo technique enables us to propagate various uncertainties using the common formula. This feature reduces
the implementation cost. We performed numerical experiments using the proposed technique to construct the probability
densities at three peak ground acceleration values. Then, we estimated the mean values using the constructed probability
densities and compared them to the MVN model. The comparison showed a good agreement between the proposed technique
and the MVN model. Therefore, the proposed technique is a good candidate method for propagating the uncertainty of
seismically induced joint failure probability.

REFERENCES

[1] North Anna Nuclear Power Plant Seismic Event. 2011.

[2] Company TEP. Fukushima Genshiryoku Jiko Chdosa Hokokusho (Fukushima Nuclear Accident Analysis Report).
Tokyo, Japan: Tokyo Electric Power Company; 2012.



%S RAM2025 Asian Symposium on Risk Assessment and Management 2025

www.asram2025.org Pattaya, Thailand, 27 — 29 August 2025

(3]
(4]
(3]
(6]
(7]

(8]
[9]
[10]

[11]
[12]

Anup A, Talaat M, Grant F, Ferrante F. Quantifying partial fragility correlations in seismic probabilistic risk
assessments 2022.

Kim SY, Kim JH. Seismic correlation coefficient evaluation for the application of separation of variables approach in
fragility assessment. Nuclear Engineering and Technology 2025;57:103238.

Budnitz RJ, Hardy GS, Moore DL, Ravindra MK. NUREG/CR-7237: Correlation of Seismic Performance in Similar
SSCs (Structures, Systems, and Components). 2017.

Watanabe Y, Oikawa T, Muramatsu K. Development of the DQFM method to consider the effect of correlation of
component failures in seismic PSA of nuclear power plant. Reliab Eng Syst Saf 2003;79:265-79.

Soga S, Higo E, Miura H. Theoretical comparison of models for a seismically induced joint failure probability. In:
Smith C, Paulos T, editors. Probabilistic Safety Assessment and Management PSAM 16, Honolulu, O’ahu, Hawaii:
2022.

Smith PD, Dong RG, Bernreuter DL, Bohn MP, Chuang TY, Cummings GE, et al. NUREG/CR-2015: Seismic safety
margins research program: Phase I: Final Report-Overview. Washington, DC: 1981.

Genz A, Bretz F. Computation of multivariate normal and t probabilities. vol. 195. Springer Science & Business
Media; 2009.

Subcommittee of External Hazard PRA. A Standard for Procedure of Seismic Probabilistic Risk Assessment for
Nuclear Power Plants: 2015 [in Japanese]. Atomic Enegry Society of Japan; 2015.

Reed JW, Kennedy RP. Methodology for developing seismic fragilities. Tr-103959 1994;3.

Jones E, Oliphant T, Peterson P, Others. SciPy: Open Source Scientific Tools for Python, 2001
(http://www.scipy.org/). Http://WwwScipyOrg/ 2015.



