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ABSTRACT 

 

Earthquakes are a significant contributor to the risk of nuclear power plants in Japan. An earthquake has the potential to 

cause simultaneous damage to multiple redundant components, and seismic probabilistic risk assessment quantitatively 

addresses such a risk. While several approaches have been proposed to estimate the mean value of the seismically induced joint 

failure probability of multiple components, the propagation of its uncertainty remains an unresolved issue that requires further 

investigation. This paper addresses this issue and proposes a technique to propagate the uncertainty of the seismically induced 

joint failure probability of multiple components. First, we review one of the major failure criteria in seismic probabilistic risk 

assessment. Then, we discuss how to convert this failure criterion into the mean value of the joint failure probability of multiple 

components. We develop a simple Monte Carlo technique to propagate the uncertainty of the seismic joint failure probability. 

We provide a numerical demonstration of the proposed technique, showing that the mean value obtained from the constructed 

distribution of joint failure probability agrees with the expected mean value derived from the multivariate normal model. The 

proposed algorithm enables uncertainty analysis of the seismically induced joint failure probability of multiple components. 

 

Keywords: Seismically induced joint failure probability, Probability density function, Monte Carlo simulation, Uncertainty 
analysis, Seismic probabilistic risk assessment 

 

 

I. INTRODUCTION 

 

Earthquakes are considered one of the major risk contributors to nuclear power plants. For example, several nuclear power 

plants, such as North Anna Nuclear Power Station, experienced earthquakes resulting in reactor scrams [1]. In the Fukushima 

Daiichi nuclear power plant accident, the 2011 Tōhoku earthquake and tsunami caused core damage at three units [2]. Thus, 

operational experience of nuclear power plants demonstrates the need to account for seismic risks in nuclear power plants. 

Seismic Probabilistic Risk Assessment (PRA) is a tool that can quantify the seismic risk of nuclear power plants. Seismic 

PRA estimates risk metrics, such as the core damage frequency of a unit due to an earthquake. There are several challenges in 

seismic PRA. Seismic fragility analysis (hereinafter referred to as fragility analysis) also presents a challenge in estimating the 

seismically induced joint failure probability (hereinafter referred to as joint failure probability) of structures, systems, and 

components (SSCs).  

Fragility analysis has two challenging issues. The first issue is the lack of a consensus method to estimate correlation 

coefficients between seismic responses and between seismic capacities. Researchers have investigated how to estimate these 

correlation coefficients and their effect on the joint failure probability[3–6]. Given these correlation coefficients, fragility 

analysts can estimate the mean value of joint failure probability [7]. The multivariate normal (MVN) model is one such 

model, and there is an efficient algorithm to evaluate this model [8,9]. The second issue is that no method exists to propagate 

the uncertainty of joint failure probability. To the best of the authors’ knowledge, there are no previous studies that 

investigate how to construct and propagate the uncertainty of joint failure probability, thus representing a significant 

methodological gap in the field. 

In this paper, we address the second issue by proposing a simple Monte Carlo technique for sampling joint failure 

probabilities. Using the proposed technique enables fragility analysts to construct the uncertainty distribution of a joint failure 
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probability. In Section II, we briefly review a major failure criterion for a single SSC used in seismic PRA. Then, we extend 

this failure criterion to multiple SSCs. In Section III, we introduce a Monte Carlo technique to sample a seismically induced 

joint failure probability. In Section IV, we apply the proposed technique to a three-SSC case by propagating their epistemic 

uncertainties and compare its estimated mean value to that of the MVN model. In Section V, we discuss both advantages and 

disadvantages of the proposed techniques. Finally, in Section VI, we conclude this study. 

The proposed simple technique can also be applied to another failure criterion defined in terms of seismic responses and 

capacities. Thus, the proposed simple technique is applicable to both failure criteria in seismic PRA. 

 

II. Failure criteria 

 

In Seismic PRA, the most common failure criteria for seismically induced failure of an SSC is given as [10]: 

 

𝐴 > 𝐴𝑚𝜖𝑈𝜖𝑅 (1) 
 
where 𝐴 is the peak ground acceleration, 𝐴𝑚 is the peak ground acceleration at which the mean value of response equals the 

mean value of capacity, 𝜖𝑈 is the random variable for epistemic uncertainty, 𝜖𝑅 is the random variable for aleatory uncertainty 

[7]. 

It is common to assume that 𝜖𝑈, and 𝜖𝑅 follow lognormal distributions expressed as 

 

𝜖𝑈~ℒ𝒩(0, 𝛽𝑈) (2) 
𝜖𝑅~ℒ𝒩(0, 𝛽𝑅) (3) 

 
where 𝛽𝑈, and 𝛽𝑅 are the logarithmic standard deviations of epistemic and aleatory uncertainties, respectively.  

These failure criteria can be easily extended to simultaneous failures (hereinafter referred to as joint failures) of multiple 

SSCs. A common failure criterion must be satisfied simultaneously across all SSCs. For example, the failure criterion for joint 

failure of 𝑛 SSCs can be expressed in a vector form as 

 

[
 
 
 
 
𝐴
⋮
𝐴
⋮
𝐴]
 
 
 
 

>

[
 
 
 
 
𝐴𝑚,1𝜖𝑈,1𝜖𝑅,1

⋮
𝐴𝑚,𝑖𝜖𝑈,𝑖𝜖𝑅,𝑖

⋮
𝐴𝑚,𝑛𝜖𝑈,𝑛𝜖𝑅,𝑛]

 
 
 
 

, (4) 

 
where 𝐴𝑚,𝑖 is the median peak acceleration of the 𝑖th SSC, and 𝜖𝑈,𝑖 and 𝜖𝑅,𝑖 are the random variables for epistemic and aleatory 

uncertainties of the 𝑖th SSC, respectively. When Eq. (4) is satisfied, all SSCs are considered to fail. 

Epistemic and aleatory uncertainties are assumed to follow a multivariate lognormal distribution expressed as 

 

[

𝜖𝑈,1
⋮
𝜖𝑈,𝑛

] = 𝝐𝑼~ℳℒ𝒩(𝟎, 𝚺𝑼) (5) 

[

𝜖𝑅,1
⋮
𝜖𝑅,𝑛

] = 𝝐𝑹~ℳℒ𝒩(𝟎, 𝚺𝑹), (6) 

 

where 𝟎 is the zero vector, 𝝐𝑼 and 𝝐𝑹 are the vectors of random variables for aleatory and epistemic uncertainties, respectively, 

and 𝚺𝑼 and 𝚺𝑹 are the covariance matrices of aleatory and epistemic uncertainties. Note that these covariance matrices are 

expressed in terms of correlation matrices given as 𝚺𝑼 = diag(𝜷𝑼)𝝆𝑼diag(𝜷𝑼) and 𝚺𝑹 = diag(𝜷𝑹)𝝆𝑹diag(𝜷𝑹), where 𝜷𝑼 

and 𝜷𝑹  are the vectors of epistemic and aleatory uncertainties, respectively and 𝝆𝑼 and 𝝆𝑹 are the correlation matrices of 

epistemic and aleatory uncertainties, respectively. 

 

III. MONTE CARLO TECHNIQUE TO SAMPLE JOINT FAILURE PROBABILITY 
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In this section, we propose a Monte Carlo technique to sample the seismically induced joint failure probability of 𝑛 SSCs. 

First, we develop a Monte Carlo technique for a single SSC, which is then extended to 𝑛 SSCs.  

 

 

III.A. Monte Carlo technique for a single SSC 

 

In this section, we propose a Monte Carlo technique for calculating the seismically induced joint failure probability of a 

single SSC. To demonstrate the proposed technique, we focus on the propagation of epistemic uncertainty under the failure 

criterion.  

Let us take the logarithm of Eq. (1) as ln 𝐴 > ln𝐴𝑚 + ln 𝜖𝑈 + ln 𝜖𝑅. The purpose of this transformation is to convert 𝜖𝑈 

and 𝜖𝑅 to normal distributions. Thus, ln 𝜖𝑈 and ln 𝜖𝑅 follow normal distributions. This step is not mandatory but simplifies 

implementation. 

In the next step, we sample epistemic uncertainty. Let ln 𝜖𝑈,𝑗 be the 𝑗th sampled epistemic uncertainty from a normal 

distribution. Note that Monte Carlo simulations do not sample the aleatory uncertainty since the aleatory uncertainty is later 

integrated to define a failure probability. Now, one can transform the failure criterion as follows. 

 

ln 𝐴 𝐴𝑚⁄ − ln 𝜖𝑈,𝑗 > ln 𝜖𝑅 (7) 
 

Then, the last step is to convert Eq. (7) into a failure probability. ln 𝜖𝑅 follows a normal distribution, and thus, one can obtain 

the probability of satisfying Eq. (7) by taking the integration of ln 𝜖𝑅 from ∞ to ln 𝐴 𝐴𝑚⁄ − ln 𝜖𝑈,𝑗, which is the cumulative 

distribution function given as 

 

𝑃(ln𝐴 𝐴𝑚⁄ − ln 𝜖𝑈,𝑗 > ln 𝜖𝑅) = Φ(
ln𝐴 𝐴𝑚⁄ − ln 𝜖𝑈,𝑗

𝛽𝑅
) , (8) 

 

where Φ(⋅) is the cumulative distribution function of a standard normal distribution. Eq. (8) is interpreted as the conditional 

failure probability given ln 𝜖𝑈,𝑗. Thus, we can sample failure probability using Eq. (8) and ln 𝜖𝑈,𝑗. Repeating this sampling can 

construct the probability density of failure probability. In Algorithm 1, we summarize the above Monte Carlo technique.  

 

Input: 1. Peak ground acceleration 𝐴 

2. Median peak ground acceleration 𝐴𝑚 

3. Logarithmic standard deviations 𝛽𝑅 and 𝛽𝑈 

4. Number of the Monte Carlo trials 𝑁 

Output: Sampled failure probabilities 𝑷 

1. Initialize an empty vector 𝑷 = {} 
2. {𝑥1, 𝑥2, ⋯ , 𝑥𝑁} ← Draw 𝑁 samples from 𝒩(0, 𝛽𝑈) 
3. For each 𝑥𝑗 do 

4. 𝑃𝑗 ← Evaluate Eq. (8) with ln 𝜖𝑈,𝑗 = 𝑥𝑗 

5. Append 𝑃𝑗 to 𝑷 

6. Return 𝑷 

Algorithm 1: Monte Carlo procedure to propagate epistemic uncertainty in the seismically induced failure probability of a 

single SSC 

 

Note that one can sample ln 𝜖𝑈  using a uniform distribution on [0,1] using the distribution function technique. The 

cumulative distribution function of ln 𝜖𝑈  is given by 𝑞 = Φ(ln 𝜖𝑈 𝛽𝑈⁄ ). Since 𝑞  is the cumulative value of ln 𝜖𝑈 , we can 

consider 𝑞 follows a uniform distribution on [0,1], and ln 𝜖𝑈  is expressed as ln 𝜖𝑈 = 𝛽𝑈Φ
−1(𝑝). Then, we can sample the 

corresponding ln 𝜖𝑈 by sampling 𝑞. Now, let us assume that 𝑞𝑗  is the 𝑗th sample of 𝑞. Now, we get the corresponding 𝑗th 

sample of ln 𝜖𝑈 as ln 𝜖𝑈,𝑗 = 𝛽𝑈Φ
−1(𝑞𝑗). Thus, Eq. (8) is also given as 

 

𝑃(ln𝐴 𝐴𝑚⁄ − ln 𝜖𝑈,𝑗 > ln 𝜖𝑅) = Φ(
ln𝐴 𝐴𝑚⁄ − 𝛽𝑈Φ

−1(𝑞𝑗)

𝛽𝑅
) . (9) 
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For the single-component case, one can also directly sample failure probability using the equation of the fragility curve. 

The fragility curve is a function of peak ground acceleration that presents a failure probability [11]. The fragility curve equation 

is given as 

 

𝐹(𝑝, 𝐴, 𝐴𝑚, 𝛽𝑈, 𝛽𝑅) = Φ(
ln𝐴 𝐴𝑚⁄ + 𝛽𝑈Φ

−1(𝑞)

𝛽𝑅
) , (10) 

 

where 𝑞 is the analyst’s confidence in epistemic uncertainty. Note that one can assume that 𝑞 follows a uniform distribution. 

Thus, one can uniformly sample the value of 𝑞 to propagate the epistemic uncertainty using Eq. (10).  

A noticeable difference between Eqs. (9) and (10) is that they have the different signs in front of 𝛽𝑈Φ
−1(𝑝). This difference 

does not affect their probability density. We first show that Eq. (9) can generate the same probability density function as Eq. 

(10). Figure 1 compares the probability densities constructed by Eqs. (9) and (10) with 106 samples. 

 

 
Figure 1. Comparison of the probability densities constructed by Eqs. (9) and (10) with 𝐴 = 1.05, 𝐴𝑚 = 1.1, 𝛽𝑈 = 0.15, and 

𝛽𝑅 = 0.12 

 

Figure 1 shows that Eqs. (9) and (10) yield identical probability densities even though the signs of ln 𝜖𝑈,𝑗 in Eq. (8) and 

𝛽𝑈Φ
−1(𝑝) in (10) are opposite. This observation can be explained as follows. Φ−1(𝑝) is symmetric at the origin, implying that 

Φ−1(𝑝) and Φ−1(−𝑝) have the same values for all 𝑝, and consequently, ln 𝜖𝑈 and − ln 𝜖𝑈 have the same probability density. 

Figure 1 confirms we can use Eq. (8) to propagate epistemic uncertainty. 

Eq. (8) is easily modified to propagate aleatory uncertainty by swapping how the uncertainties are treated. In the above 

derivation, epistemic uncertainty is sampled, and aleatory uncertainty is integrated to transform the inequality into a failure 

probability. Instead, we can swap their treatment as the aleatory uncertainty is sampled, and the epistemic uncertainty is 

integrated to transform the inequality into failure probability. Let 𝜖𝑅,𝑗 denote the 𝑗th sample of aleatory uncertainty. Then, we 

can get the following equation: 

 

𝑃(ln 𝐴 𝐴𝑚⁄ − ln 𝜖𝑅,𝑗 > ln 𝜖𝑈 ≥ −∞) = Φ(
ln𝐴 𝐴𝑚⁄ − ln 𝜖𝑅,𝑗

𝛽𝑈
) , (11) 

 

where ln 𝜖𝑅,𝑗 is the 𝑗th sample of aleatory uncertainty. Eqs. (8) and (11) have the same functional form, and therefore, we 

only need to implement Eq. (8) to evaluate Eq. (11) with different parameters. 

 

III.B. Algorithm for multiple SSCs 

In the previous section, we proposed equations to propagate the uncertainty of seismically induced failure probability, with 

a focus on different types of uncertainties. In this section, we propose equations to propagate the uncertainty of the seismically 

induced joint failure probability of multiple SSCs. The approach is the same as the single SSC. We first take the logarithm of 
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the failure criterion. Then, we transform a failure criterion into failure probability using the symmetric property and the 

cumulative distribution function.  

Let us consider the failure criterion of Eq. (4) and follow the same steps as the single SSC case. We take the logarithm, 

sample the epistemic uncertainty of each SSC, and transform the inequality into the failure probability. Let 𝜖𝑈,𝑖,𝑗 denote the 𝑗th 

sample value of epistemic uncertainty of the 𝑖th SSC. Now, Eq. (4) is transformed as 

 

[
 
 
 
 
ln𝐴
⋮
ln𝐴
⋮
ln𝐴]

 
 
 
 

⏟  
ln𝑨

−

[
 
 
 
 
ln𝐴𝑚,1
⋮

ln 𝐴𝑚,𝑖
⋮

ln 𝐴𝑚,𝑛]
 
 
 
 

⏟      
ln𝑨𝒎

−

[
 
 
 
 
ln 𝜖𝑈,1,𝑗
⋮

ln 𝜖𝑈,𝑖,𝑗
⋮

ln 𝜖𝑈,𝑛,𝑗]
 
 
 
 

⏟      
ln 𝝐𝑼,𝑗

>

[
 
 
 
 
ln 𝜖𝑅,1
⋮

ln 𝜖𝑅,𝑖
⋮

ln 𝜖𝑅,𝑛]
 
 
 
 

⏟    
ln 𝝐𝑹

. (12)
 

 

where 𝑨 is the vector of peak ground accelerations, 𝑨𝒎 is the vector of median peak ground accelerations, 𝝐𝑼,𝑗 is the vector of 

𝑗th samples of epistemic uncertainties, and 𝝐𝑹 is the vector of random variables for aleatory uncertainties. Note that ln 𝝐𝑹 

follows a MVN distribution. 

Now, let the vector 𝒙 equal ln 𝝐𝑹, and we can transform Eq. (12) by taking the cumulative distribution function of an MVN 

distribution to the failure probability as 

 

𝑃(ln𝑨 − ln𝑨𝒎 − ln𝝐𝑼,𝑗 > 𝒙 ≥ −∞) = ∫
1

(2𝜋)𝑛 2⁄ |𝚺𝑹|
1 2⁄
exp (−

1

2
𝒙T𝚺𝑹

−1𝒙) 𝑑𝒙.

ln𝑨−ln𝑨𝒎−ln𝝐𝑼,𝑗

−∞

(13) 

 

The right-hand side of Eq. (13) is the formula for the cumulative distribution function of an MVN distribution with zero mean 

value. Eq. (13) is the conditional failure probability given the 𝑗th sampled values of epistemic uncertainties. In the literature, 

there is a fast Monte Carlo algorithm to evaluate Eq. (12) proposed by Genz and Bretz1 [9]. Thus, using Eq. (13) to propagate 

the epistemic uncertainty of failure probability is computationally feasible. 

We summarize the steps for propagating epistemic uncertainty using the Monte Carlo sampling technique in Algorithm 1. 

 

Input: 1. Peak ground acceleration 𝐴 

2. Vector of median peak ground accelerations 𝑨𝒎 

3. Covariance matrices 𝚺𝑹 and 𝚺𝑼 

4. Number of the Monte Carlo trials 𝑁 

Output: Sampled failure probabilities 𝑷 

1. Initialize an empty vector 𝑷 = {} 
2. {𝒛1, 𝒛2, ⋯ , 𝒛𝑁} ← Draw 𝑁 samples from ℳ𝒱𝒩(0, 𝚺𝑼) 
3. For each 𝒛𝑗 do 

4. 𝑃𝑗 ← Evaluate Eq. (13) with ln 𝝐𝑼,𝑗 = 𝒛𝑗 using Genz-Bretz algorithm 

5. Append 𝑃𝑗 to 𝑷 

6. Return 𝑷 

Algorithm 2: Monte Carlo procedure to propagate epistemic uncertainty in seismically induced joint failure probability 

 

Eq. (13) can be easily modified to propagate aleatory uncertainty. By switching the role of epistemic and aleatory 

uncertainties in the above derivation, we get a similar expression for the conditional failure probability given aleatory 

uncertainties as 

 

 
1 For example, in Python, the multivariate_normal.cdf function in the scipy packages (version 1.14.4) [12] can be used to 

evaluate Eq. (13). 
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𝑃(ln𝑨 − ln𝑨𝒎 − ln𝝐𝑹,𝑗 > ln𝝐𝑼) = ∫
1

(2𝜋)𝑛 2⁄ |𝚺𝑼|
1 2⁄
exp (−

1

2
𝒙T𝚺𝑼

−1𝒙) 𝑑𝒙

ln𝑨−ln𝑨𝒎−ln𝝐𝑹,𝑗

−∞

(14) 

 

where 𝒙 equal ln 𝝐𝑼 , and 𝝐𝑹,𝑗  is the vector of the 𝑗th samples of aleatory uncertainties. Eq. (14) is the conditional failure 

probability given the 𝑗th sampled values of epistemic uncertainties. 

 

IV. NUMERICAL EXPERIMENT 

 

In this section, we demonstrate the propagation of epistemic uncertainties using Algorithm 2 for a three-component case. 

We summarize parameter values used in this numerical experiment in Table 1, where 𝝆𝑼 and 𝝆𝑹 are correlation matrices of 

epistemic and aleatory uncertainties, respectively, and 𝜷𝑼 and 𝜷𝑹 are the vectors whose 𝑖th elements are epistemic and aleatory 

uncertainties of SSCs, respectively. 

 

Table 1. Input Parameters Employed in the Numerical Demonstration 

Parameter Sample value 

𝐴 1.0, 1.1, 1.2 

𝑨𝒎 [1.05 0.95 1.00]T 

𝜷𝑹 [0.12 0.09 0.1] 
𝜷𝑼 [0.08 0.06 0.07] 
𝝆𝑹 

[
1 0.3 0.2
0.3 1 0.4
0.2 0.4 1

] 

𝝆𝑼 
[
1 0.7 0.6
0.7 1 0.8
0.6 0.8 1

] 

𝚺𝑹 diag(𝜷𝑹)𝝆𝑹diag(𝜷𝑹) 
𝚺𝑼 diag(𝜷𝑼)𝝆𝑼diag(𝜷𝑼) 

 

 

Figure 2 shows the histograms constructed from 107 generated samples based on the parameter values shown in Table 1.  

 

 
Figure 2. Probability densities constructed from 107 samples of joint failure probabilities at 1.0, 1.1, and 1.2 

 

To verify the above result, we evaluate the mean value using the generated joint failure probabilities and comapre it with 

an MVN model such that 

 



                                      Asian Symposium on Risk Assessment and Management 2025 

www.asram2025.org                                                                                   Pattaya, Thailand, 27 – 29 August 2025  

 

7 

𝑃̅ = ∫
1

(2𝜋)𝑛 2⁄ |𝚺𝑼 + 𝚺𝑹|
1 2⁄
exp (−

1

2
𝒙T(𝚺𝑼 + 𝚺𝑹)

−𝟏𝒙) 𝑑𝒙

ln 𝑨−ln𝑨𝒎

−∞

. (16) 

 

This MVN model is a variation of a model used in the Seismic Safety Margin Research program [8], and that Eq. (16) has a 

different integration domain. In Table 2, we summarize the comparison of estimated mean values. 

 

 

Table 2. Comparison of the mean estimations between the proposed model and the MVN model 

PGA Value Proposed technique 
MVN model* 

Estimated Mean Monte Carlo error 

1.0 2.1284e-01 1.4589e-04 2.1282e-01 

1.1 5.1483e-01 2.2690e-04 5.1482e-01 

1.2 7.7645e-01 2.7865e-04 7.7644e-01 

* The reported values are obtained using the internal integration function of the SciPy library, scipy.stats._mvn, under 

settings that guarantee convergence with absolute and relative errors smaller than 10-10. 

 

Table 2 shows that the proposed technique accurately reproduces the mean estimates of joint failure probabilities derived 

from the constructed probability densities presented in Figure 2. Thus, this result suggests that the proposed technique can 

correctly generate the uncertainty distribution of the seismically induced joint failure probability of SSCs. 

 

V. DISCUSSION 

We numerically investigated the proposed technique and demonstrated that it can generate the probability density of joint 

failure probability consistent with the MVN model. One obvious advantage of the proposed technique is its simplicity; fragility 

analysts can easily implement it. Additionally, the proposed technique does not require any additional parameters to construct 

the uncertainty of the joint failure probability, provided that fragility analysts have already estimated the mean value of the 

joint failure probability using the MVN model. This is advantageous because fragility analysts do not have to conduct additional 

analysis. 

Although it is difficult to determine the correlation coefficients between responses and between capacities, it is possible to 

assume prior distributions for these coefficients and incorporate the constructed probability density of joint failure probability 

as part of the likelihood function. In doing so, fragility analysts can use a Bayesian updating framework to reduce the 

uncertainty associated with these correlation coefficients. 

As mentioned in the introduction, it is challenging to obtain the correlation coefficients between responses and between 

capacities which are required parameters for both the MVN model and the proposed technique. Thus, establishing a 

methodology for estimating these correlation coefficients is also an important direction for future research. 

A probability density constructed by the proposed technique inevitably includes a Monte Carlo error. This Monte Carlo 

error limits the applicability of the proposed technique. For example, it is difficult to obtain accurate gradient information from 

a constructed probability density. This inaccuracy makes it difficult to use a gradient-based method, such as a Hamiltonian 

Monte Carlo method. Therefore, establishing an analytical method to derive the probability density function is an important 

direction for future research. 

 

V. CONCLUSIONS 

We proposed a Monte Carlo technique to propagate the uncertainty of seismically induced joint failure probability. The 

proposed Monte Carlo technique enables us to propagate various uncertainties using the common formula. This feature reduces 

the implementation cost. We performed numerical experiments using the proposed technique to construct the probability 

densities at three peak ground acceleration values. Then, we estimated the mean values using the constructed probability 

densities and compared them to the MVN model. The comparison showed a good agreement between the proposed technique 

and the MVN model. Therefore, the proposed technique is a good candidate method for propagating the uncertainty of 

seismically induced joint failure probability. 
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