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ABSTRACT

Probabilistic risk assessments of nuclear power plants have relied on conservative deterministic criteria for core damage
determination, despite advancements in plant response and system analyses, including the best-estimate plus uncertainty
(BEPU) methodology. To achieve more rational and realistic assessments, we previously proposed a probabilistic approach for
estimating fuel rod fracture during loss-of-coolant accidents (LOCAs) in light-water reactors by developing a fracture
probability estimation model that integrates BEPU analysis. In this framework, fracture probabilities are estimated using a
stress-strength model, in which stress and strength are represented as probability distributions modeled as functions of the
equivalent cladding reacted (ECR)—a key indicator of fuel cladding oxidation under LOCA conditions. The stress distribution
is represented by a log-normal model derived through Bayesian inference of BEPU analysis results, while the strength
distribution is modeled with a log-probit model based on Bayesian inference applied to LOCA-simulated test data. A Monte
Carlo simulation samples and compares random values from these distributions to calculate probabilities. However, this
approach requires substantial computational resources. To address this, we explored a numerical integration method that
replaces the full propagation of uncertainty with representative curves constructed from posterior distributions, aiming to
approximate the fracture probabilities calculated by Monte Carlo simulation with reduced cost. This study investigates how
representative curves—based on pointwise means or medians computed from sampled distributions at each ECR value—affect
the accuracy of the numerical integration results compared to full Monte Carlo simulations. By analyzing four combinations of
normal and log-normal distributions for stress and strength, we found that using the pointwise mean curve yields highly accurate
results, with relative errors below 1%, while the use of the pointwise median curve causes larger discrepancies. This approach
improves computational efficiency in rare fracture probability estimation while retaining compatibility with uncertainty-aware
modeling.

Keywords: Fuel rod fracture, LOCA, BEPU, Stress-strength model, Bayesian inference, Monte Carlo simulation, Numerical
integration

I. INTRODUCTION

In the field of nuclear power plant safety assessment, recent advancements have been made toward more realistic and
rational evaluation methods, including best-estimate plus uncertainty (BEPU) [1] and probabilistic risk assessment (PRA).
These methods have been primarily applied to estimate stress-side parameters, such as peak cladding temperature (PCT) and
equivalent cladding reacted (ECR), which indicate the degree of oxidation in fuel cladding tubes. On the other hand, strength-
side criteria used for core damage determination, such as regulatory ECR limits, remain highly conservative and deterministic,
as they are based on conditions that ensure fuel rods (fuel cladding tubes) do not fracture during loss-of-coolant accidents
(LOCAs) [2]. Importantly, fuel rod fracture itself does not directly lead to core damage; rather, core damage arises when
fractured rods reduce the core’s cooling capability. This imbalance—where stress is estimated using best-estimated methods
with uncertainty consideration, while strength is estimated deterministically—can result in excessive conservatism in safety
evaluation, as shown in Figure 1 [3].

To resolve this inconsistency, a previous study proposed a probabilistic model for estimating the fracture probability of
fuel rods under LOCA conditions of light-water reactors (LWRs), incorporating uncertainties and using ECR [4]. This model
serves as a best-estimate representation of the strength-side characteristics. Building on this model, we have previously
developed a probabilistic framework for determining fuel rod fracture under LOCA conditions by integrating BEPU-based
plant response analysis with the probabilistic fracture model [3].
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Our proposed approach has provided a probabilistic fuel rod fracture determination method using the stress-strength model and
Monte Carlo simulations. Furthermore, we have explored numerical integration to enhance the accuracy of the estimation for
rare fracture probabilities, offering an alternative to Monte Carlo simulations, which might not effectively handle these events.

However, this issue remains, as numerical integration cannot directly handle uncertainties in their distributions. To address
this limitation, we consider an approach in which uncertainty in the distribution parameters is replaced with representative
curves—such as those based on pointwise means or medians, computed from sampled distributions at each ECR value—
thereby enabling integration without repeated stochastic sampling. This study aims to explore how representative curves can
be used effectively to ensure the reliability and accuracy of fracture probability estimation using numerical integration.
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FIGURE 1. Imbalance Between Stress-side and Strength-side Estimations in Safety Assessments [3]

II. PROBABILISTIC FRACTURE DETERMINATION METHOD
II.A. Fracture Determination Using the Stress-Strength Model

In our previous study [3], we have proposed a fracture determination method utilizing the stress—strength model and Monte
Carlo simulations. In this chapter, we present a detailed explanation of the method. The model employs probability distributions
on both the stress side (representing plant response) and the strength side (representing the fracture threshold of fuel rods).
These distributions are constructed using the ECR as the explanatory variable under LOCA conditions. The use of ECR is
supported by previous studies indicating that it is a dominant factor in the fracture of fuel cladding tubes during LOCAs [4].

We present herein the complete methodology of the probabilistic fracture determination approach. First, distributions for
ECR on both the strength and stress sides are estimated, including uncertainty. Then, values are randomly sampled from both
distributions and compared. If the ECR value drawn from the stress distribution exceeds the corresponding value from the
strength distribution, a fracture is considered to have occurred. Otherwise, no fracture is assumed. This process is repeated
multiple times, and the fracture probability is calculated as the proportion of trials resulting in fracture.

11.B. Estimation of Stress Distribution

To estimate the stress distribution, we use ECR data obtained under specific accident conditions. In the study, we employ
the BEPU analysis results for a pressurized water reactor (PWR) large break LOCA scenario conducted by Zugazagoitia et al.
[5]. The analysis, performed using the TRACES code (Patch 4) [6], assumes a guillotine break at both ends of a reactor coolant
system pipe. A total of 1021 simulations are performed to estimate parameters such as peak cladding temperature (PCT) and
local maximum oxidation (LMO), where LMO is defined identically to ECR. This number of simulations is adopted directly
from the dataset provided by Zugazagoitia et al. [5], as it is designed to ensure sufficient coverage of parameter variability
while maintaining computational feasibility. We adopt the ECR values from this analysis because our estimation focuses on
the relationship between ECR and fuel rod fracture.

Using this dataset, we estimate the stress distribution while incorporating uncertainty. For this purpose, we assume that the
ECR follows a log-normal distribution. This choice reflects the distribution’s ability to capture rare but high ECR values due
to its long right tail and the fact that it is defined only for positive values. These features make the log-normal distribution well-
suited for representing the probabilistic characteristics of the stress side ECR data. For the parametric estimation of the
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distribution using the log-normal distribution, we use Bayesian inference with Markov chain Monte Carlo (MCMC) methods
as follows:

X,,..~ LogNormal(u,o) (1)

stress
where X, . represents the literature value of ECR (-), and x# and o represent the mean and standard deviation of the log-
normal distribution.
Using the posterior distribution of the parameters estimated from Eq. (1), the posterior predictive distribution of the stress
side’s ECR can be expressed as follows:
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where p,., (x| X,,.) represents the posterior predictive distribution of the stress side’s ECR, x represents ECR, and

tress

Pyos (1,0 X,,,... ) represents the joint posterior distribution of the parameters.

The estimation involved running four chains with 2,000 iterations each, discarding the first 1,000 iterations in each chain
as warm-up, resulting in 4,000 posterior samples in total. For the marginal prior distributions of the parameters, non-informative
distributions are used, employing a normal distribution with a mean of 0 and a variance of 10* [7]. The convergence of MCMC
sampling is confirmed by examining the R statistics [8] for all parameters, which are found to be sufficiently close to 1.0,
indicating good mixing across chains. In addition, trace plots of all four chains are visually inspected to confirm that the samples
have reached stationary distributions after the warm-up. These non-informative priors are selected to avoid imposing prior bias,
allowing the data to drive the inferences while minimizing potential bias from weakly supported prior beliefs. The sampling is
performed using the No-U-Turn Sampler (NUTS), an adaptive variant of Hamiltonian Monte Carlo (HMC), as implemented
in the rstan package. NUTS is chosen over traditional because it adaptively tunes step sizes and trajectory lengths, offering
faster convergence and more efficient exploration of the posterior distribution in low-dimensional models without requiring
manual tuning of proposal distributions.

The results are shown in Figure 2 [3], where the blue histogram represents the ECR dataset from the simulation results of
the previous study. The black line and shaded regions correspond to the median, 50% interval, and 95% interval of the posterior
predictive distribution, respectively.

I1.C. Estimation of Strength Distribution

The strength distribution is estimated based on a fracture probability model developed in a previous study [4]. In that study,
LOCA-simulated tests were carried out under conditions designed to eliminate conservatism. The resulting data, including both
fractured and unfractured outcomes of Zircaloy-4 cladding tubes, were used to construct a probabilistic model of the
relationship between ECR and fracture probability using Bayesian inference. Assuming the binary fracture outcomes follow a
Bernoulli distribution [8], a log-probit model was adopted to estimate the fracture probability curve [9]. In this model, ECR is
calculated using the Baker—Just equation [10]. However, because the ECR values on the stress side are obtained using the
Cathcart—Pawel equation [11], we recalculate the strength-side ECR values using the same equation to ensure consistency
across both sides. The fracture probability estimation model is expressed as:

Y ~ Bernoulli(P(Y =1| X ,,..)) ®)
P(Y=1]X,,,.,)= [a +Blog X e } ®)
p])red (y = 1 | X\'trength > Y) = ,[(D I:a + ﬂlog thrength :'p[m.\'t (a’ ﬂ | Y)dadﬁ (5)

where Y represents binary coded LOCA-simulated test data, where 1 indicates a fracture and 0 indicates no fracture. X,
is the ECR (-). P(Y =1|X_,,,,) is a fracture probability given X

strength *

Porea (VY =11 X yonen»Y) TEpresents the posterior
predictive distribution of the fracture probability, the link function @ employs the cumulative distribution function (CDF) of
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the standard normal distribution, & and S represent the scalars of unknown parameters to be estimated, and p,,, (@, 8Y)
represents the joint posterior distribution of the parameters.

While the stress distribution is represented by a probability density function (PDF), the strength distribution is initially
given as a CDF. Therefore, we apply the inverse function method to derive the corresponding ECR probability density function
from the CDF.

In this model, the parameters & and /S are estimated using Bayesian inference with the MCMC method. The Bayesian
estimation conditions are set identically to those used for the stress side. The convergence of MCMC sampling was confirmed
in the same manner as for the stress side, through the examination of R statistics [8] and trace plots.

The results are shown in Figure 3 [3], where the red points represent the binary data concerning fracture and non-fracture
of the test rods obtained from the LOCA-simulated test. The black line and shaded regions indicate the median, 50% interval,
and 95% interval of the posterior predictive distribution of the fracture probability, respectively.
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FIGURE 2. Probability Density Distribution of ECR Estimated Using Log-normal Distribution [3]
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FIGURE 3. Fracture Probability Curve Estimated Using the Log-probit Model [3]

III. IMPROVING COMPUTATIONAL EFFICIENCY OF RARE FRACTURE PROBABILITIES
III.A. Fracture Probability Calculation Using Numerical Integration

According to Zugazagoitia et al. [5] and Nissley et al. [12], actual ECR values from BEPU analysis of large break LOCA
scenarios are typically only a few percent. For such low ECR values, the corresponding fracture probabilities become extremely
small, presenting challenges for Monte Carlo simulation-based estimation. This is because Monte Carlo methods require sample
sizes proportional to the inverse of the target probability to achieve reasonable accuracy, meaning extremely large numbers of
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trials are needed for rare events with very low probabilities. To address this issue, we have introduced a numerical integration
approach as an alternative to Monte Carlo simulations for estimating rare fracture probabilities [3]. In this section, we outline
the numerical integration approach introduced in our previous study [3].

This approach involves integrating the overlapping areas of the stress and strength distributions. Due to the complexity of
deriving an analytical solution, the ECR domain from 0 to 1 is divided into sufficiently small intervals, and numerical
integration using the trapezoidal rule is applied to find an approximate solution.

This method could estimate rare fracture probabilities with lower computational loads than the Monte Carlo simulation.
However, using numerical integration, it is not possible to directly handle distributions that include uncertainties. Therefore,
representative curves corresponding to specific credible levels are used, effectively removing the uncertainty in advance. The
calculation of fracture probability using numerical integration is expressed as follows:

Py = [ oy O8] 6,0)% B (| 2, )1 (6)

where f,,. (x| u,0) represents the probability density function of ECR for the stress side, F,,, ., (x|a, ) represents the

cumulative probability distribution function of ECR for the strength side, x represents ECR, and other parameters represent
those estimated via Bayesian inference, set to a specific credible level.

IT1.B. Consideration of Uncertainty in Numerical Integration

As mentioned in Section III.A, numerical integration offers a computationally efficient alternative to Monte Carlo
simulation for estimating rare fracture probabilities. However, because numerical integration cannot directly incorporate
parameter uncertainty, it requires the use of representative distributions or curves in which uncertainty is removed, which
presents a methodological challenge.

As one approach to addressing this challenge, we have investigated whether using representative curves corresponding to
specific credible levels could produce results comparable to Monte Carlo methods [3]. To conduct this investigation, we have
created a virtual dataset by increasing the ECR values from a BEPU analysis [5] for a PWR large break LOCA scenario tenfold,
resulting in 1020 data points after excluding one entry where ECR exceeded 100%. This modification was necessary as the
original ECR values were too low to demonstrate significant fracture phenomena.

We then have examined how fracture probability estimates from numerical integration using curves corresponding to
various credible levels compared to those from a Monte Carlo simulation. Our analysis has revealed that when curves
corresponding to approximately a 55% credible level, the numerical integration produced fracture probability estimates (15.1%)
that matched those from the Monte Carlo simulation. This finding suggests that by appropriately replacing parameter
uncertainty with representative curves, it is possible to calculate fracture probabilities that consider uncertainties using
numerical integration. This approach allows for estimating rare fracture probabilities with high computational accuracy and
low computational load while considering uncertainties.

IV. EVALUATING THE APPLICABILITY OF NUMERICAL INTEGRATION UNDER VARIOUS
UNCERTAINTY CONDITIONS
IV.A. Analytical Conditions

As described in the previous section, our previous study demonstrated that numerical integration using a representative
curve corresponding to approximately the 55% credible level produces results comparable to a Monte Carlo simulation that
evaluates overall uncertainties. However, this result was specific to the dataset used in our previous study [3], and may not
necessarily generalize to other distribution types or uncertainty structures. Therefore, we investigate how representative
curves—constructed by removing parameter uncertainty—can be used in numerical integration to ensure broad applicability
under various combinations of stress and strength distributions and their associated uncertainties.

Considering how Monte Carlo simulation handles uncertainties, each trial involves fixing distribution parameters through
random sampling, with the fracture probability calculated by repeating these trials sufficiently. Consequently, a Monte Carlo
simulation with adequate trials should converge to numerical integration results using curves representing the mean of
uncertainty distributions. To verify this approach, we prepared stress and strength distributions with uncertainties and
performed numerical integration using pointwise mean curves, validating accuracy by calculating errors against true values.
The pointwise mean curve refers to a line connecting mean probability density values calculated for each small interval across
the ECR range. For comparison, we also computed errors for pointwise median curves derived through the same methods. The
verification included all combinations of normal and log-normal distributions for both stress and strength distributions. When
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both the stress and strength distributions are assumed to follow normal distributions, the fracture probability can be calculated
analytically. The fracture probability under this assumption is given by the following expression:

©

P = J{ij (x)dx}fs(x)dx -0 el (7)

[ 2 2
O, +0y

where P, represents the fracture probability, f; (x) and f;(x) represent the PDFs of the strength and stress distributions,
respectively, x represents the ECR, ; and x4, represent the mean values of strength and stress distributions, respectively,
o, and oy represent the standard deviations of strength and stress distributions, respectively.

For the log-normalxlog-normal case, logarithmic transformation of stress and strength values enables derivation of
analytical solutions as same to the normal distribution case. For cases with different distribution types (normalxlog-normal,
log-normalxnormal), Monte Carlo simulation results with 10® trials were used as true values. For numerical integration, the
integration range was set to cover at least 99.99% of the total cumulative probability, with 103 divisions.

For each case, we assigned prior distributions to the parameters (mean 4 , standard deviation ¢ ), and used prior predictive
distributions created from 4,000 extracted samples as stress and strength distributions. To ensure uniform parameter variation,
normal distributions were used for g priors, while log-normal distributions with small standard deviations were used for o
priors, since these parameter settings assume a symmetric uncertainty structure where the mean and median of the distributions
are nearly equal. The specific prior settings for all four cases (Normal x Normal, Lognormal x Lognormal, Normal x Lognormal,
and Lognormal x Normal) are summarized in Table I. The prior predictive distributions p(x) can be expressed by the
following equations:

p() =[] p(x| ,0) p(1) po)d pd o ®)

The parameters were adjusted to ensure final fracture probabilities fell within a 0.1%-2.0% range, allowing meaningful

comparison with Monte Carlo simulations. This range was selected because it corresponds to a level at which the true values
can be accurately estimated using 10® Monte Carlo simulation trials, which were used in cases where analytical solutions were
not available. Figure 4 shows an example of the predictive distributions for the normalxnormal case, where the red dotted line
represents the pointwise mean curve, the black solid line indicates the median curve, and the shaded regions show the 50%
interval and 95% interval of the distribution.

IV.B. Results and Discussion

Table II summarizes the relative errors obtained using pointwise mean and median curves for each stress—strength
distribution pairing. Numerical integration with the pointwise mean curve resulted in relative errors of 0.29%, 0.08%, 0.04%,
and 0.06% across the four distributional combinations. In contrast, using the pointwise median curve yielded higher errors of
19%, 11%, 9.2%, and 8.6%, respectively. These findings indicate that numerical integration using the pointwise mean curve
yields fracture probabilities that closely match analytical solutions and Monte Carlo simulation results, with relative errors
below 1%. This approach outperforms the use of pointwise median curves, which leads to noticeably larger deviations.

While this chapter has focused on evaluating the applicability of numerical integration across different distributional
combinations of stress and strength, it does not consider variations in the shape of the parameter uncertainty distributions.
Addressing this limitation by incorporating a wider range of uncertainty characteristics remains an important direction for
future research.



%S RAM2025 Asian Symposium on Risk Assessment and Management 2025
www.asram2025.org Pattaya, Thailand, 27 — 29 August 2025

TABLE 1. Prior Distribution Settings for Stress and Strength Parameters Across All Cases

Normal X Normal Lognormal X Lognormal | Normal X Lognormal Lognormal X Normal

Stress U Normal (1, 0.05?) Normal (0, 0.05?) Normal (1, 0.05%) Normal(0, 0.052)

Distribution | LogNormal(log0.5, 0.1%)| LogNormal(log0.5, 0.1%) | LogNormal(log0.5, 0.1%) | LogNormal(log0.5, 0.1%)

Strength | X Normal(3, 0.052) Normal(1.6, 0.05%) N(1.4, 0.05%) N(3, 0.05?)

Distribution | LogNormal(log0.5, 0.1%)| LogNormal(log0.5, 0.1%) | LogNormal(log0.5, 0.1%) | LogNormal(log0.5, 0.1%)

TABLE II. Relative Errors in Fracture Probability Estimation Accuracy for Each Distribution Combination

Relative errors (%)
X
Normal X Normal Lognormal Normal X Lognormal Lognormal X Normal
Lognormal
Mean 0.29 0.08 0.04 0.06
Curve
Median 19 1 9.2 8.6
Curve
1.00F
0751
"g ........ : Mean
%MO? . Median
ig : 50% interval
a 0251 : 95% interval
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FIGURE 4. Prior Predictive Distributions for the NormalxNormal Case
V. CONCLUSIONS

In our previous study, we have proposed a probabilistic fracture determination method based on a stress—strength
framework and Bayesian inference, aiming to efficiently estimate fuel rod fracture probabilities under LOCA conditions while
accounting for parameter uncertainties. In this method, both stress and strength distributions are modeled as functions of ECR.
As part of this method, we introduced numerical integration as an alternative to Monte Carlo simulation to estimate rare fracture
probabilities with reduced computational cost. However, since numerical integration cannot be directly applied to distributions
that retain parameter uncertainty, representative curves—constructed by summarizing the uncertainty (e.g., via pointwise
means or medians computed from sampled distributions at each ECR value)—are required. Building on this framework, the
present study investigated how representative curves derived from stress and strength distributions can be used in the numerical
integration process to reproduce fracture probabilities consistent with those obtained from Monte Carlo simulations with full
uncertainty propagation.

We evaluated the effect of different distributional combinations (normal and log-normal) and compared the accuracy of
two approaches—using pointwise mean curves and pointwise median curves. The results showed that using the pointwise mean
curve consistently achieved high accuracy, with relative errors below 1% in all cases, whereas using pointwise median curves
resulted in larger errors ranging from 8% to 20%. These findings indicate that the performance of numerical integration is
highly sensitive to the choice of statistical summary, and that using pointwise mean curves is robust across typical distribution
types.

While the current study focused on symmetric uncertainty structures in which the mean and median are approximately
aligned, future work should extend the applicability of the method to more general cases involving skewed or heavy-tailed
uncertainty distributions.
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Furthermore, generalizing our findings into a mathematical model that includes margins could be considered. Our current
approach represents a best estimate method aimed at accurately understanding phenomena. By generalizing this into a
mathematical model that incorporates margins, the method could produce outputs corresponding to required credible levels,
making it more suitable for engineering applications.

While this study modeled fuel fracture, future efforts could model the entire process from fuel fracture to core damage.
This would shift from the conservative evaluation of "fuel fracture equals core damage" to a more realistic evaluation. Potential
applications could include using the integrity of the reactor pressure vessel to determine core damage.
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