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ABSTRACT

Advancing Human Reliability Analysis (HRA) is vital for nuclear safety, as it evaluates human responses to accidents
within Probabilistic Risk Assessment (PRA) Conventional HRA methods estimate Human Error Probability (HEP) based on
Performance Shaping Factors (PSFs) under static scenarios but struggle to address dynamic environmental changes. To
overcome this limitation, it is crucial to model uncertainties in human behavior arising from continuously evolving
spatiotemporal environmental conditions. This research aims to develop a dynamic HRA approach that incorporates the effects
of evolving environments on human behavior. To achieve this, we propose a computational framework that utilizes the
Continuous Markov Chain Monte Carlo (CMMC) method. Within this framework, PSFs are regularly updated based on
monitored environmental changes to capture their impact on HEP. Subsequently, Monte Carlo sampling is employed to
generate stochastic human behavior events, which in turn provide feedback to the environment. Through this iterative process,
a dynamic HRA approach is realized by fostering evolving, bidirectional interactions between humans and their surrounding
environment. A hypothetical example applying this proposed computational framework is also demonstrated in this research,
showcasing its potential to quantitively confirm the previously unexplored influence on the repair task resulted from dynamic
phenomenon.

Keywords: Dynamic human reliability analysis, Continuous Markov chain Monte Carlo method, Dynamic interaction
between human and environments, Performance shaping factors, Human error probability.

I. INTRODUCTION

Probabilistic Risk Assessment (PRA) serves as a fundamental approach for addressing the intricate safety and reliability
issues within Nuclear Power Plants (NPPs). A key part of PRA is Human Reliability Analysis (HRA), which focuses on
detecting potential human errors and quantifying their likelihood, known as Human Error Probability (HEP), during safety
evaluations. Among the many HRA techniques developed over time, the Technique for Human Error Rate Prediction (THERP)
is particularly prominent [1]. THERP analyzes a target task by breaking it down into smaller, discrete steps using a decision
tree model, while incorporating Performance Shaping Factors (PSFs) that represent external environmental conditions and
internal operator characteristics such as skill level.

However, traditional HRA methods generally depend on fixed, static scenarios, making them inadequate for capturing how
transient environmental variations affect operator performance. This limitation results in persistent uncertainties when assessing
dynamic accident scenarios. Furthermore, dynamic PRA approaches have been developed to explicitly model the timing and
sequence of events, thus providing a more thorough identification of failure paths throughout different accident progressions.
This evolving research trend underscores the urgent need for dynamic HRA methodologies that can effectively account for
fluctuating environmental influences on human tasks and integrate smoothly within dynamic PRA frameworks.

This paper aims to develop a dynamic HRA approach that reflects changing environmental impacts on human behavior
over time. The approach extends conventional HRA by utilizing the Continuous Markov Chain Monte Carlo (CMMC) method
[2], which has been previously applied in dynamic PRA analyses. In this approach, the Markov chain process continuously
updates PSFs based on real-time environmental monitoring, thereby influencing the estimation of HEP. These updated
probabilities then guide Monte Carlo simulations that generate stochastic sequences of dynamic events. Additionally, an
originally proposed computational framework is introduced in this research, designed to capture the mutual interactions
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between humans and their environment in a cyclic manner. An example is also presented in this study to illustrate how the
proposed framework leverages the CMMC method to enhance the flexibility of the traditional HRA approach.

II. METHODOLOGY
II.A. Computational Framework Overview

The proposed dynamic analysis framework, as shown in Fig. 1, is built upon two key components: (1) the Structures,
Systems, and Components (SSCs) State Solver, which functions based on stochastic principles, and (2) the Plant State Solver,
which operates deterministically.

After initializing all the necessary parameters, the SSCs State Solver is activated firstly, processing the current SSCs and
plant information through either the Malfunction Analysis Module or Repair Analysis Module, depending on whether the
specific ju SSC (SSCJ*, n is the current step in the analysis framework) is presently functioning or malfunctioning. Subsequently,
CMMC method is applied with referring to the plant conditions to update the SSC state stochastically from SSC/* to SS Cj"*'l.

Until all the SSC}"s are evaluated, the framework transfers all the updated SSCs states to the Plant State Solver.
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FIGURE 1. The proposed CMMC-based framework.
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Following which, the Plant State Solver then conducts transient analyses (such as Computational Fluid Dynamics
simulations) to model the plant state deterministically. After completing the transient analysis, if the predetermined end time
(tenq) has not been reached yet, the updated plant state information is transferred to the SSCs State Solver.

Ultimately, this framework creates a dynamic, bidirectional coupling analysis that combines deterministic environmental
simulations with stochastic modeling of SSC behaviors in a cyclical manner. Since the previous research [2] covers the CMMC
method's application to SSC malfunction analysis, the next section will explore how to use CMMC method for dynamic repair
analysis, particularly focusing on expanding traditional HRA into a dynamic framework.

I1.B. Utilizing CMMC Method to Dynamically Embed HRA in the Framework

The use of the CMMC method within the SSCs State Solver can be divided into two main components: (1) the continuous
Markov chain process and (2) Monte Carlo sampling, as depicted in Fig. 1. During the continuous Markov chain process, if the
Repair Analysis Module is enabled, HRA is carried out to estimate the HEP for the repair task of the j.;, SSC at the n;, step
(HEP"), taking the current condition of the plant into account. The value HEP" can also be represented in the form of a typical
repair rate expression, as below:

HEP]n — e‘ﬂ:},jXATr(grace),j (1)

where AT, (grqce),j is the grace period allowed for repairing the jy, SSC, and ' ; is the instantaneous repair rate at step n. By
rearranging the equation, it becomes clear that u;" ; reflects the effects of the current plant state as captured by HEP" in the
HRA.

Au:},j == ln(HEPjn)/ATr(grace) ()

In addition, y;'; indicates the likelihood of a repair occurring within a unit time interval, assuming no previous repair has
been performed for that task; therefore, incorporating this updated ;' ; into the transition matrix at the end of the Markov chain

process (illustrated in Fig. 1) allows for the calculation of the j,;, SSC’s state transition probabilities (namely, the probability
of switching to a working state (Pﬁ;rlk' ;) or staying in a malfunctioning state (P,’,llzll' ;) atthe n + 1.y, step) while factoring in the
n

current state of the SSC. Here, if the j;, SSC is operational at step n, then SSCy,. j = 1 and SSCpy; ; = 0, and vice versa.
Finally, Monte Carlo sampling is applied using Pﬁgrlk' ;jand P,’,;le j» allowing for the stochastic resolve of the j;, SSC’s state at
the n + 14, step.

II1. TEST CASE EXPLANATION
III.A. Applied Scenario

To examine the proposed CMMC-based framework, this study applies a hypothetical scenario involving volcanic ashfall
on a typical sodium-cooled fast reactor (SFR), as illustrated in Fig. 2. In the SFR, decay heat removal depends on the Auxiliary
Cooling System (ACS), which operates through air cooling. The ACS can function in either Forced Circulation (FC) or Natural
Circulation (NC) mode; the FC mode requires power supplied by the Electricity Distribution System (EDS). However, volcanic
ashfall may clog the ACS filters, potentially causing system failure. Furthermore, ash accumulation can also affect the filters
within the Emergency Diesel Generators (EDGs) and the Heating, Ventilation, and Air Conditioning (HVAC) system. These
effects ultimately influence whether the EDS can provide electricity to the ACS to enable FC mode operation.

To restore decay heat removal capability, repair tasks involve replacing the malfunctioning filters. During the replacement,
the clogged ash on the filter would be disturbed, dislodged, and subsequently dispersed into the surrounding work environment,
increasing airborne ash concentration. This elevated ash concentration reduces visibility for personnel, which may adversely
affect the performance of repair tasks.

The analysis of filter malfunctions is conducted by the Malfunction Analysis Module within the SSCs States Solver, as
shown in Fig. 1, where methodological details are available in previous work [2]. Therefore, this study primarily concentrates
on the Repair Analysis Module related to filter replacement and illustrates how the HEP is dynamically updated in response to
spatiotemporal environmental variations, as detailed in the following section.
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FIGURE 2. The schematic of interactions between the ACSs and adjacent components/systems under volcanic ashfall.

III.B. HEP Update
III.B.1. HEP Estimation

The concept underlying the estimation of HEP in this study is introduced here. First, a task structure analysis must be
conducted. An example of such a task structure, represented by a Crew Response Diagram (CRD), is presented in Fig. 3.
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FIGURE 3. Example of task structure analysis via the Crew Response Diagram (CRD).

After conducting the task structure analysis and breaking down its constituent steps, the HEP for the j,, SSC at the n;, time
step, denoted as HEP;", can be expressed as follows:

HEP!' = 1 —[Tii=1[1 = P(ER; |(1 = Eg—1 )] 3)
dXEp; .

PER; | (- By ) =— [if k # 1] @)

P(E}; | A —E}1 ) = ET; [if k =1] (5)

where E}/; represents the human error probability for the k), step at the n.;, timestep for the j, SSC. The parameter d in Eq.
(4) accounts for the dependence level between consecutive steps (k.j, and k — 1) to model the conditional probability of Ey; ;.
Several factors influence this dependence level, including the similarity of equipment operated at each step, the time lag
between step executions, and the spatial distance between operation locations. Additionally, the operator’s skill proficiency
plays a significant role. For the different dependence levels of complete dependence (CD), high dependence (HD), moderate
dependence (MD), low dependence (LD), and zero dependence (ZD), d equal to 0, 1, 6, 19, and oo, respectively. Furthermore,
E}j can be estimated using the following equation:
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E,?_j =NHEP,?J- XPSF}-" 6)
where NHEP); represents the nominal HEP, and PSF;" denotes the performance shaping factor for the k), step at the n;, time
step for the j;, SSC. In this research, PSF/" is further decomposed into the following components:

PSF!" = PSF}%, ; X PSFZ.

j enviromen ,j (7)
where PSFZ iroment,j Tepresents the influence of dynamic environmental conditions, and PSFp,s, ; accounts for all remaining
contributions that are independent of environmental changes.

In this study, the repair task is assumed to consist of four sequential steps: (1) Loosen the screw, (2) Take-off the old filter,
assuming LD with the former step (3) Install the new filter, assuming HD with the former step, and (4) Fasten the screw,
assuming LD with the former step. Furthermore, the traditional HRA method, THERP, is employed as an example to estimate
both the NHEP; and the PSFp,,, ;. The procedure for updating the PSFg, at each time step is detailed in the

enviroment,j
following section.

1I1.B.2. Update PSF in Response to Environmental Spatiotemporal Change

enviroment,j

Based on the hypothetical repair task described in Section III.A, the update process of PSFgypiroment,; at €ach time step in

the Repair Analysis Module is divided into two stages: (1) estimating visibility according to changes in the volcanic ash

concentration in the working environment, and (2) updating PSFg, i oment,j based on the resulting changes in visibility.

Before estimating visibility, it is necessary to calculate the volcanic ash mass concentration in the working environment
within the Plant State Solver (as illustrated in Fig. 1). This calculation accounts for the ash dislodged from the malfunctioning
filter during the repair task. In this study, Fick’s first law is applied to the continuity equation to model the diffusion process of
the dislodged ash. Consequently, the spatiotemporal-dependent ash mass concentration, c(r, t) [kg/m?], is governed by the
following equation:

—acg't) =DV?c(r,t) +S(r,t) [re€R3t>0] ®

where D [m?%/s] is diffusivity constant, and S(r, t) represents the source term for volcanic ash generation or absorption. Since
the dislodged ash from the malfunctioning filter should be considered as S(r, t), a simplification is made by assuming that the
dislodged ash is released instantaneously at the beginning of the task rather than continuously over time. Under this assumption,
S(r,t) is set to zero, and the initial released ash mass concentration My [kg/m?] around the released location r is defined as
the initial condition. Meanwhile, at an infinite distance from the point of ash release, the ash concentration is assumed to be
zero as the boundary condition. For a three-dimensional infinite domain, the classical analytical solution for ¢(r, t) under the
given conditions is as below [3]:

—||r—ro||2)

My
t) = —2— 4Dt
C(T‘ ) (47'[Dt)1/2 €

[t > 0] ©)

In this study, 7 is set as 0. Furthermore, considering the repetitive nature of the repair task, the contribution of all previously
released ash masses can be treated as a linear superposition. Consequently, the expression for ¢(r, t) is expanded to:

2
( : | ))
M 4p( " —t;
Cn = m_ H tn — t; X M x J Y, M(start) 10
j M=1 (] ],M(start)) [4nD(t]1'L_tj.M(start))]1/2 e ( )

where ¢/* [kg/m’] means the ash mass concentration when repairing j,, component at n, timestep, and t; ystare) [s] means
the starting time of the M, repair task for j.;, component, and m means the order of the current task when repairing j,; SSC at
ngy, timestep. H(*) is the Heaviside step function ensuring that contributions from previous repair tasks are only considered
when ;' > t; y(stare)- Mjm [kg/m?] is the released ash mass concentration from the My, repair task. By setting the radial
distance between the dislodged ash and the staff position as rj" [m], cj" at each timestep can be determined by using Eq. (10)
within Plant State Solver.
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Once the Plant State Solver calculates c;", this information is transferred to the Repair Analysis Module within the SSCs
States Solver to assess the impact of ¢;* on the visibility. Visibility is typically expressed as follows:

VP =3.912/B% (11)

where V" [m] denotes the visibility distance during the repair of the j» component at the 75, timestep, and B¢y ; [1/m] represents
the extinction coefficient corresponding to ¢;*. When the diameter of the volcanic ash particles is significantly larger than the
wavelength of visible light, the geometric scattering approximation can be applied [4], allowing B¢, ; to be expressed as
follows:

Bowej = 2w Xirinl (1) (12)

where nj' (1) [1/m?] denotes the number density of ash particles with radius r; during the repair of the j; component at the 7y,
timestep. Accordingly, the impact of ash mass concentration on V}! can be estimated by applying the information of ¢j' from
Eq. (10) to Zirizn]'-‘(ri) in Eq. (12). Then, in this study, when V}' decreases to less than one meter, the PSFe,yiroment 15
assumed to increase to a value of two. Moreover, the relationship between PSFe,piroment,j and Vj' is modeled as an exponential
decay function, as expressed in Egs. (13) and (14).

PS ennviroment,j =1+ eZ(l_Vj) [lf an = 1] (13)
PSFglnviromen J =2 [lf V‘n < 1] (14)
III.C. Summary of the Case Explanation

This example demonstrates how transient environmental factors, exemplified by the dynamic evolution of ash
concentration ¢/, can be quantitatively linked to PSFg iromene ; in the context of updating HEP. Specifically, visibility V;*
acts as an intermediary variable connecting environmental conditions with human performance. By embedding this mechanism
within the proposed computational framework, transient environmental influences can be dynamically and bidirectionally

integrated into HRA during repair tasks.
IV. RESULTS AND DISCUSSION

To further assess the framework’s capability to bidirectionally respond to environmental spatiotemporal changes, an
additional test case is introduced alongside the scenario described in Chapter III (hereafter referred to as AM1(DHRA)). This
new case, named AM1 in the following discussion, fixes the value of PSFg,,iroment,j at one, thereby neglecting the influence
of ¢j*. For each case, 500 samples are included in the analysis.

Fig. 4(a) illustrates an example of ACS state history for the AM1(DHRA) case. The y-axis represents the ACS states:
forced circulation (value 2), natural circulation (value 1), and failure (value 0). Correspondingly, Fig. 4(b) depicts the temporal
variation of ash concentration in the room housing the ACS, accounting for ash dislodged from the malfunctioning filter once
repair operations commence following filter failure. Furthermore, Fig. 5 compares the ash concentration histories in alternative
rooms containing different ACS units and EDGs. It is observed that the equilibrium room ash concentration increases with the
number of repair tasks performed, indicating that the cumulative effects of prior repairs on the same component/system are
considered. Additionally, the rate of increase in equilibrium room ash concentration is more pronounced in EDG environments
than in ACS, owing to the higher repair frequency of EDGs, which stems from their greater inflow rates [2] and consequently
leads to higher failure rates compared to ACS units.

Subsequently, two indices are employed to evaluate the analytical results of AM1(DHRA) and AM1 from the perspectives
of heat removal ability (Index 1, presented in Fig. 6(a)) and repair cost (Index 2, shown in Fig. 6(b)). The definitions of Index
1 and Index 2 are provided below:

Index1 = 0.5X(tacsi— +tacsa— )+0.25X(tacsi— +tacsz— ) (15)
24 hours
Index2 = trepai X Mstaff per repair (16)
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where t 51— represents the total operating time of ACS1 in forced circulation mode in a sample, t,, denotes the total
repair time for all filters in a sample, and N4 £ per repair cOrresponds to the number of staff assigned to perform a repair task
(three staff members in this study). An Index 1 value of one indicates that both ACS1 and ACS2 operated continuously in FC
mode over the past 24 hours. As shown in Fig. 6(a), incorporating dynamic HRA that accounts for environmental
spatiotemporal changes during repair task analysis shows a detrimental effect on decay heat removal capability.
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FIGURE 4. A sample of considering the environmental spatiotemporal change on the repair task: (a) ACS’s state
history, and (b) historical data of the ash concentration in the room housing ACS1.
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FIGURE 6. The cumulated frequency to Index 1 (heat removal ability) and Index 2 (repair cost) among different
cases, including w/o considering the environmental spatiotemporal change on the repair task.

To further explore the factors contributing to the differences in Index 1 between the cases, Fig. 7(a) shows that the average
repair time for an ACS filter is longer in the AM1(DHRA) case. This increase is attributed to the reduced visibility caused by
ash dislodged from repeatedly replaced malfunctioning filters, as reflected in the dynamic updating of HEP within the Repair
Analysis Module. Concurrently, the longer average repair time reduces the frequency of ACS repairs, as depicted in Fig. 7(b),
resulting in only a slightly higher total ACS repair time in AM1(DHRA) compared to AM1 (Fig. 7(c)). This is consistent with
the marginally lower total ACS operating time observed in AM1(DHRA) (Fig. 7(d)). However, since the failure frequency of
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EDGs is higher than that of ACS units, the reduction in operating time is more pronounced for EDGs when environmental
spatiotemporal changes are considered in repair task analysis. Therefore, as shown in Fig. 7(e), the ratio of operating time in
FC mode to total operating time is significantly lower in AM1(DHRA), indicating that the FC-to-total time ratio is a more
critical factor influencing heat removal capability (Index 1) than total operating time alone (Fig. 7(d)). Finally, the relationship
between Index 1 and Index 2, presented in Fig. 7(f), reveals that economic efficiency related to repair tasks tends to be
overestimated if the influence of environmental spatiotemporal changes is neglected.

In summary, these results demonstrate the capability of the proposed CMMC-based framework to quantitatively capture
the uncertainties arising from bidirectional environmental spatiotemporal changes on repair task analysis from multiple
perspectives, including heat removal performance and economic efficiency. Moreover, the framework facilitates intuitive
investigation and identification of key factors influencing the defined indices.
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FIGURE 7. The cumulated frequency to the parameters related to the Index 1 investigation among different cases.

V. CONCLUSIONS

To realize dynamic HRA, this study proposes a computational framework that integrates the CMMC method. In summary,
the framework demonstrates the following key features: (1) incorporating and quantifying the effects of environmental
spatiotemporal variations on human behavior through the Markov chain process within the CMMC method; (2) translating
changes in human behavior into dynamic events that provide feedback to the evolving environment via Monte Carlo sampling;
and (3) enabling bidirectional dynamic interactions between humans and the environment within the developed computational
framework. Additionally, an example application of the proposed framework is presented to illustrate its potential in
quantitatively capturing uncertainties arising from environmental spatiotemporal influences on repair task analysis. However,
the current stage of this study is limited to the case of filter replacement in response to volcanic ashfall hazards, and the
relationship between visibility in the working environment and PSFs still requires further investigation. Future work will focus
on conducting additional case studies to validate and expand the applicability of the proposed framework.
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