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ABSTRACT

Characterizing and understanding the uncertainties of human reliability is a critical aspect of the risk-related decision-making
process. Among various kinds of uncertainties, parametric uncertainty of human error probability (HEP) reflects variabilities
in the method-dependent parameters, such as nominal HEP, effects of performance shaping factors on HEPs, and recovery
factors. Because of a lack of data supporting these kinds of parametric bounds, the rules for bound determination in human
reliability analysis (HRA) methods have not been grounded on sufficient evidence. This study attempts to estimate uncertainty
bounds for parametric uncertainty using Monte Carlo simulations. Extending the authors’ study, here uncertainties residing in
the error rates of local manipulations and recovery behaviors were additionally involved in the simulations. Based on the results
of this empirical estimation, we derived the characteristics of parametric uncertainties based on the failures and elements with
the highest contribution. We expect that these characteristics will be useful in understanding the uncertainty of human
reliability.

Keywords: Human error probability, Human reliability analysis, Monte Carlo simulation, Parameter uncertainty, Uncertainty
analysis

I. INTRODUCTION

Human reliability analysis (HRA) is a key part of probabilistic safety assessment (PSA) that looks at how people interact
with systems during specific events, examines how these interactions can fail, and calculates the chance of human errors
occurring (known as human error probability or HEP) in these events [1]. However, in order to facilitate the application of
HRA, HRA models simply represent the complex processes of human—system interactions and cognitive behaviors and rely on
estimates from expert opinions or data extracted from similar contexts due to insufficient empirical data [2]. Therefore, a clear
understanding and utilization of the uncertainty in HRA is necessary for risk-based decision making. Many uncertainty
guidelines generally classify uncertainties into three categories: parameter, model, and completeness [3,4]. Among them,
parameter uncertainty is associated with the values of the component parameters in the HRA model, such as the nominal HEPs,
performance shaping factor (PSF) multipliers, and recovery multipliers. Current HRA methods employ beta or lognormal
distributions to anticipate the parameter bounds [2]. In the case of lognormal distributions, the error factor, which is the ratio
between the median and the 5th percentile or between the median and the 95th percentile, is often calculated to represent the
bounds. When a random variable X is lognormally distributed, In(X)~N(mu, sigma?), sigma is equivalent with In(error
factor)/1.645.

The authors’ previous study attempted to estimate the bounds of HEP values that an HRA method can inherently produce
[2]. To this end, we categorized the component parameters into method-dependent parameters and scenario-specific parameters
and conducted random sampling according to the distribution of the method-dependent parameters within several scenario-
specific parameter values found during current application examples of HRA. As a result, we showed that the HEP variable
most closely matches the lognormal distribution and suggested that the error factor value according to the range of HEP can be
used as a rule for estimating the parameter uncertainty of HEP. However, the paper also alluded to the fact that parameter
uncertainties can be determined by factors other than simply the HEP magnitude. Therefore, the present study revisits the
simulation data for understanding the root causes of the uncertainty variabilities of the EMBRACE (Empirical Data-Based
Crew Reliability Assessment and Cognitive Error Analysis) method, following previous studies. Prior to this, in order to
overcome the limitations of the previous Monte Carlo simulation, the simulation data are regenerated by (1) adding component
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parameters regarding local operation and (2) considering the uncertainty in recovery multipliers. We then compare the statistical
models that best explain the samples generated by Monte Carlo simulation using statistical measures and discuss the causes
that explain the dispersion of the samples, focusing on the failure probabilities and the component parameters.

Il. UNCERTAINTY PROPAGATION OF EMBRACE PARAMETERS
I1.LA. Monte Carlo Analysis

In this study, HEP values derived from the EMBRACE method [5,6] are generated by the Monte Carlo method [7]. The
EMBRACE method is based on the nominal HEPs estimated from HUREX data and the PSF multipliers elicited from a formal
expert evaluation process, which provides concrete evidence for the distribution of the component parameters. The method-
dependent parameters and scenario-specific parameters of the EMBRACE method can be distinguished as shown in Fig. 1.
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FIGURE 1. Method-dependent parameters and scenario-specific parameters of the EMBRACE method.

In the EMBRACE method, an HEP is calculated using Egs. (1), (2), and (3):

HEP = FPtp + FPce, (D
where FPtp is the failure probability of timely performance and FPce is the failure probability due to cognitive error,
In(TR)
FPtp=1—-9 , 2
o

where @ is the cumulative probability function of the standard normal distribution, TR is the time required divided by the time
available, and o is the standard deviation of the log of the distribution, and

FPce = 1_[ RM, Z 1—[ PSFMy, Z NPEPy,|, (3)
L M] Nij

J

where NPEPLy;; is the Nth type of nominal primitive error probability (PEP) for the ith task in the jth step, PSFMy; is the Mth
type of PSF multiplier in the jth step, and RMy is the Lth type of recovery multiplier.
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I1.LA.1. Scenario-Specific Parameters

The scenario-specific parameters were determined by randomly selecting examples from APR1400 application cases [6].
For instance, 28 primitive task combinations were extracted from the APR1400 procedure steps. For each HEP simulation run,
one, two, or three task combinations were randomly selected. At this time, one or zero PSFs for each combination could have
negative values so that PSFM could be multiplied by each combination. In addition, assuming that one, two, or three recoveries
were applicable, the recovery sources to be applied were randomly selected. The TR value was then randomly selected from
one of the 22 values in the time analysis cases for the APR1400. Through this process, a total of 40 scenario-specific parameter
combinations were generated. Table | shows a summary of the 40 scenario-specific cases.

TABLE I. Summary of scenario-specific parameter values for Monte Carlo simulation

Scenario Step Task number Negative PSF Recovery TR
ID number | for each step attempt number
1 2 (1) 11 (1) Independent reviewer (Execution) 1 0.31
(2) 13 (2) Complexity of required task (Execution)
2 3 1)5 (1) (All positive) 1 0.11
(2)8 (2) Training level (Execution)
(3)11 (3) (Al positive)
3 3 (1) 6 (1) Subjective stress (Transition) 1 0.30
(23 (2) Support function of computer-based procedure
3)5 (Execution)
(3) (Al positive)
4 2 (1)8 (1) (All positive) 3 0.40
(2) 11 (2) Independent reviewer (Execution)
5 1 (1) 8 (1) (All positive) 0 0.30
6 3 1) 5 (1) (All positive) 0 0.47
27 (2) (All positive)
(3) 10 (3) (All positive)
7 3 @9 (1) Career-experience level (Transition) 0 0.73
(2)5 (2) Complexity of human-machine interface
3)5 (Transition)
(3) Support function of computer-based procedure
(Transition)
8 2 13 (1) Complexity of required task (Transition) 0 0.11
(2) 6 (2) Complexity of human—machine interface
(Transition)
9 3 (1) 10 (1) (Al positive) 2 0.14
(211 (2) Support function of computer-based procedure
(3)6 (Transition)
(3) (All positive)
10 3 (1)11 (1) (All positive) 0 0.31
(2) 10 (2) (All positive)
37 (3) (All positive)
11 1 (1) 13 (1) Career-experience level (Transition) 0 0.80
12 2 (1) 11 (1) Career-experience level (Transition) 0 0.30
(2) Subjective stress (Transition)
13 2 Q)5 (2) (Al positive) 0 0.73
(2) 6 (2) (All positive)
14 2 Q)5 (2) (Al positive) 3 0.73
(2) 6 (2) Independent reviewer (Transition)
15 1 (1) 10 (1) Communication level (Execution) 3 0.50
16 3 (1) 8 (1) Procedure quality (Execution) 3 0.10
27 (2) (All positive)
(3) 10 (3) (All positive)
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17 3 (1) 8 (1) Procedure quality (Transition) 3 0.11
23 (2) Procedure quality (Execution)
(3) 10 (3) Independent reviewer (Transition)

18 2 (1) 6 (1) (Al positive) 3 0.40
(25 (2) Crew dynamics (Transition)

19 2 (1) 12 (1) Subjective stress (Transition) 2 0.08
(2) 6 (2) Training level (Transition)

20 1 D9 (1) (All positive) 1 0.30

21 1 D9 (1) (Al positive) 3 1.00

22 2 1)5 (1) Career-experience level (Transition) 2 0.08
(2) 6 (2) (All positive)

23 3 (1) 10 (1) (Al positive) 1 0.77
(2)6 (2) Complexity of human—machine interface
3)5 (Transition)

(3) (All positive)

24 3 @9 (1) Career-experience level (Execution) 2 0.35
27 (2) (All positive)
(3) 12 (3) (All positive)

25 2 19 (1) (All positive) 3 0.30
(2) 11 (2) (All positive)

26 3 )5 (1) Career-experience level (Execution) 1 0.80
(2) 10 (2) Training level (Execution)
(3) 12 (3) (Al positive)

27 2 Q7 (1) (All positive) 0 0.23
(25 (2) (All positive)

28 1 13 (1) (Al positive) 0 0.18

29 3 (1) 6 (1) Career-experience level (Execution) 0 0.73
27 (2) (All positive)
(3) 12 (3) (All positive)

30 3 1)5 (1) (Al positive) 2 0.10
27 (2) (All positive)
(3)5 (3) Procedure quality (Execution)

31 1 D9 (1) (Al positive) 3 0.40

32 3 (1)5 (1) (All positive) 3 0.13
(2) 6 (2) Procedure quality (Transition)
39 (3) Communication level (Transition)

33 1 (1) 12 (1) Subjective stress (Execution) 0 0.13

34 2 @7 (1) Training level (Transition) 1 0.50
(23 (2) Independent reviewer (Execution)

35 3 (1) 11 (1) Communication level (Transition) 1 0.03
29 (2) Communication level (Transition)
(3)5 (3) Training level (Execution)

36 2 Q7 (2) (Al positive) 2 0.18
(25 (2) (All positive)

37 1 )5 (1) Training level (Transition) 0 0.47

38 2 1)5 (1) (All positive) 1 0.77
(2) 11 2) Procedure quality (Transition)

39 2 1)5 (1) Complexity of human—machine interface 0 0.77
(2) 10 (Transition)

(2) Career-experience level (Transition)

40 2 Q7 (1) (All positive) 3 0.50

(2)3 (2) (All positive)
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I1.A.2. Method-Dependent Parameters

Table Il shows the median, 5th percentile, and 95th percentile of four types of method-dependent parameters. Most
parameters are known to be most closely described by the lognormal distribution [5,6,8,9,10], while in the case of the PEP for
situation understanding tasks, the beta distribution was used to estimate the PEP values [6]. For the parameters following a
lognormal distribution, the median value and error factor value were used to estimate the parameter. In the case of FPtp, the
median value was set when the shape parameter was 0.3403, and the error factor was calculated by regarding the values when
the shape parameter was 0.4248 and 0.2766 as the 95th and 5th percentiles [5]. For the parameters following a beta distribution,
the alpha and beta parameters derived from Bayesian inference were employed directly. A total of 10,000 random samples
were generated from the lognormal or beta distribution of each component, and HEPs were calculated by combining them with

scenario-specific parameters.

TABLE II. Distribution of the method-dependent parameters

Category | Parameter name Median 5th percentile | 95th percentile | Ref.
NPEP Detection—trend 3.08E-04 1.02E-04 9.27E-04 [6,8]
Detection—synthesis 1.51E-03 4.71E-04 4.80E-03 [6,8]
Detection—others 1.10E-04 4.31E-05 2.81E-04 [6,8]
Situation understanding (Beta distribution) 2.16E-03 3.22E-04 7.09E-03 [6,8]
Dec!s!on—sequentlal step en_try or 1.85E-04 1.01E-04 3.39E-04 [6,8]
Decision—external communication
Dec!s!on—procedure transfer or 5 62E-03 413E-03 7 47E-03 [6,8]
Decision—step transfer
Decision—detection 6.22E-05 3.28E-05 1.18E-04 [6,8]
Decision—manipulation 1.96E-03 1.12E-03 3.38E-03 [6,8]
Execut!on—smgle discrete ma}nlp_ulatlon or 1.84E-03 1.20E-03 2 79E-03 [6,8]
Execution—external communication
Execution-single continuous manipulation 1.53E-02 6.47E-03 3.19E-02 [6,8]
Execution—dynamic manipulation 1.49E-02 7.51E-03 2.82E-02 [6,8]
Execution-local discrete manipulation 5.00E-03 1.00E-03 2.50E-02 [10]
Execution-local dynamic manipulation 1.00E-02 2.00E-03 5.00E-02 [10]
PSFM Complexity of required task 3 2 10 [6,8]
for Subjective stress 5 2 10 [6,8]
transition | Complexity of human-machine interface 3 1 5 [6,8]
Procedure quality 5 3 20 [6,8]
Support function of computer-based procedure 2 1 3 [6,8]
Independent reviewer 3 1 5 [6,8]
Crew dynamics 1 1 2 [6,8]
Communication level 2 1 3 [6,8]
Training level 5 3 20 [6,8]
Career-experience level 5 3 20 [6,8]
PSFM Complexity of required task 3 2 10 [6,8]
for Subjective stress 5 2 10 [6,8]
execution | Complexity of human—machine interface 5 2 20 [6,8]
Procedure quality 5 3 20 [6,8]
Support function of computer-based procedure 3 1 5 [6,8]
Independent reviewer 3 1 10 [6,8]
Crew dynamics 1 1 2 [6,8]
Communication level 2 1 5 [6,8]
Training level 3 2 5 [6,8]
RM Review after shift change 0.0164 0.0082 0.0328 [10]
Review after procedure completion 0.05 0.018 0.14 [10]
Advisor’s monitoring—first check 0.5 0.25 1 [10]
Advisor’s monitoring—second check 0.14 0.04 0.5 [10]
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Step reviewing result 0.5 0.25 1 [10]
FPtp FPtp 1 - ®[In(TR) 1-®[In(TR) | 1-®[In(TR) | [5]
/0.3403] /0.2766] 10.4248]

11.B. Statistical Distribution Fitting

Table 111 shows the means of HEP, FPtp, and FPce calculated from 10,000 Monte Carlo samples. Among the 40 scenario
cases, FPtp was calculated higher in 18 cases, and FPce was superior in the remaining 22 cases. We compared which statistical
model best explained the distributions of HEP values among Weibull, normal, lognormal, exponential, and beta distributions.
The results of comparing the goodness-of-fit using the Bayesian information criterion (BIC) and Akaike information criterion
(AIC) measures revealed that the lognormal distribution provided models that best explained the HEPs in all cases. This is
because most of the method-dependent parameters of EMBRACE follow the lognormal distribution.

TABLE I11. Mean values of the simulation samples and estimates for lognormal distributions

Scenario ID | HEP mean FPtp mean FPce mean mu sigma exp (mu) Error factor
1 3.12E-02 1.36E-03 2.98E-02 —3.7969 0.807401 | 0.02244 3.77415
2 3.34E-03 1.00E-06 3.34E-03 —5.80472 | 0.45193 0.003013 | 2.10313
3 5.10E-03 1.04E-03 4.06E-03 —5.61288 | 0.796492 | 0.003651 | 3.70702
4 6.43E-03 6.43E-03 1.00E-06 —5.64835 | 1.09252 0.003523 | 6.0327
5 5.70E-03 1.13E-03 4.58E-03 —5.25482 | 0.34077 0.005222 1.75166
6 4.13E-02 1.72E-02 2.41E-02 —3.25275 | 0.346237 | 0.038668 1.76749
7 2.24E-01 1.84E-01 3.99E-02 —1.51491 | 0.189006 | 0.219827 1.36467
8 2.06E-02 1.00E-06 2.06E-02 —4.04016 | 0.557961 | 0.017595 | 2.50389
9 5.40E-05 1.00E-06 5.30E-05 —10.1841 | 0.84808 3.78E-05 4.03535
10 1.22E-02 1.43E-03 1.07E-02 —4.45038 | 0.233364 | 0.011674 1.46797
11 4.36E-01 2.57E-01 1.80E-01 —0.86441 | 0.257481 | 0.4213 1.52738
12 8.84E-02 1.15E-03 8.73E-02 —2.63458 | 0.644101 | 0.071749 | 2.88506
13 1.90E-01 1.84E-01 6.10E-03 -1.67613 | 0.16998 0.187097 1.32262
14 1.84E-01 1.84E-01 3.30E-05 -1.70744 | 0.174115 | 0.181329 1.33165
15 2.56E-02 2.56E-02 2.00E-06 —3.87966 | 0.653845 | 0.020658 | 2.93168
16 1.70E-05 1.00E-06 1.60E-05 —11.4394 | 0.942451 1.08E-05 4.71304
17 1.86E-03 1.00E-06 1.86E-03 —7.14578 | 1.306375 | 0.000788 | 8.57617
18 6.42E-03 6.30E-03 1.19E-04 —5.59127 | 1.038492 | 0.00373 5.51968
19 3.84E-04 1.00E-06 3.83E-04 —8.75841 | 1.324959 | 0.000157 | 8.84239
20 4.64E-03 1.11E-03 3.54E-03 —5.5471 0.528738 | 0.003899 | 2.38637
21 5.00E-01 5.00E-01 4.20E-05 —0.69306 | 0.000108 | 0.500042 1.00018
22 1.25E-03 1.00E-06 1.25E-03 —7.19002 | 1.001934 | 0.000754 | 5.19752
23 2.27E-01 2.26E-01 9.71E-04 -1.48954 | 0.13208 0.225477 1.24268
24 3.48E-03 2.80E-03 6.73E-04 —6.25344 | 0.988996 | 0.001924 | 5.08807
25 1.15E-03 1.15E-03 7.00E-06 —8.41806 | 1.74344 0.000221 17.6011
26 2.62E-01 2.57E-01 4.59E-03 —1.34527 | 0.108128 | 0.26047 1.19467
27 2.49E-02 2.43E-04 2.46E-02 —3.73083 | 0.26744 0.023973 1.55261
28 6.07E-03 1.60E-04 5.91E-03 —5.13759 | 0.189119 | 0.005872 1.36493
29 2.42E-01 1.84E-01 5.82E-02 -1.43336 | 0.173711 | 0.238506 1.33077
30 2.18E-03 1.00E-06 2.18E-03 —6.49762 | 0.861451 | 0.001507 | 4.12508
31 6.49E-03 6.48E-03 1.20E-05 —5.64347 | 1.089725 | 0.003541 | 6.00503
32 1.12E-04 1.00E-06 1.11E-04 —9.47932 | 0.869753 7.64E-05 4.18181
33 6.94E-02 1.00E-06 6.94E-02 —2.79994 | 0.513144 | 0.060814 | 2.32593
34 5.30E-02 2.55E-02 2.74E-02 —3.14204 | 0.619842 | 0.043194 | 2.7722
35 5.77E-03 1.00E-06 5.77E-03 —5.52182 | 0.845858 | 0.003999 | 4.02062
36 1.09E-04 8.30E-05 2.70E-05 -10.5947 | 1.0199 2.5E-05 5.35342
37 5.43E-02 1.68E-02 3.75E-02 —3.05301 | 0.522682 | 0.047217 | 2.36272
38 2.30E-01 2.27E-01 3.35E-03 -1.47787 | 0.131956 | 0.228123 1.24243




%SRAMZOZS

www.asram2025.org

Asian Symposium on Risk Assessment and Management 2025
Pattaya, Thailand, 27 — 29 August 2025

39

2.47E-01

2.26E-01

2.10E-02

—1.40508

0.130892

0.245347

1.24026

40

2.60E-02

2.59E-02

7.20E-05

—3.86554

0.657314

0.020952

2.94845

The parameters when fitting the HEP distribution to the lognormal distribution are thus shown in the fifth and sixth
columns of Table I1I. The exponentiated mu shown in the seventh column indicates the median of the HEP estimated by the

fitted lognormal distribution. The last column presents the error factor values according to the lognormal distribution.

I11. DISCUSSION ON THE CHARACTERISTICS OF UNCERTAINTY BOUNDS

fact that FPce also affects the error factor because FPtp and FPce have similar values.

Error factor

S5E-06

5E-05

SE-04

Exponentiated mu

SE-03

SE-02

FIGURE 2. Scatter plot between exponentiated mu (x-axis) and error factor (y-axis).

TABLE IV. Uncertainty bound rule for FPtp in [5]

FPtp range Error factor
0.5 <=FPtp 1
0.05<=FPtp<0.5 2

0.01 <= FPtp < 0.05 3

0.006 <= FPtp < 0.01 4

0.003 <= FPtp < 0.006 5

0.001 <= FPtp < 0.003 75

1.0E-4 <= FPtp < 0.001 17

1.0E-5 <= FPtp < 1.0E-4 40

FPtp < 1.0E-5 90

The characteristics of the parameter uncertainty bounds of HEPs can be discussed based on the relationship between
exponentiated mu and error factor. A scatter plot of the exponentiated mu and error factor can be depicted as in Fig. 2. Here,
the blue diamonds indicate cases where FPtp is higher than FPce, and the green triangles indicate cases where FPce is higher
than FPtp. By examining Table 11l and Fig. 2, the uncertainty bounds of HEP can be said to have the following characteristics.
First, when FPtp exceeds FPce, a typical trend of the uncertainty bounds of FPtp is observed. Table IV shows the relationship
between FPtp values and their error factors presented in the previous report. Most blue diamonds in Fig. 2 are coincident with
Table IV. For example, scenario ID 25 has an error factor of HEP higher than 17, which is consistent with the third row in
Table IV. On the other hand, for ID 36, the error factor is not high even though the HEP is low. This can be attributed to the

20
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16

14

12

10
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Second, when FPce is superior to FPtp, the error factor is found to have a value between 2 and 10. It is observed that the
magnitude of the error factor is influenced not only by the dimensions of the HEP or FPce but also by the quantity of primitive
tasks evaluated, the PSF multipliers applied, or the recovery multipliers considered. When the number of primitive tasks, the
number of negative PSF states, and the number of recovery factors are noted as a, b, and c, respectively, a*(b+1)*(c+1)—2
could be a measure for the number of the component variables included (note that this scale adds 1 to b and c to avoid cases
where the formula produces 0 when b and c are 0). Figure 3 shows the correlation between the variable number measure and
the magnitude of the error factor. In general, it is understood that as the number of component variables increases or the HEP
diminishes, the error factor escalates.

10
9

8 y=0.0174x+1.8956

S
= .
R R*=0.6106.-
c 7 :
e
4D 6
[’ - A
4 A A A A
N A
3 i
A A
2 e -
A, A
1
0
0 50 100 150 200 250 300 350 400

The product of number of tasks, number of PSFs, and number of recoveries [a*(b+1)*(c+1)-2]

FIGURE 3. Scatter plot between the product of number of tasks included, number of PSFs having a negative state,
and number of recoveries applied (x-axis), and error factor (y-axis).

Considering the trend of the error factor presented in Fig. 2, it is interpreted that the error factor determination rule
according to the HEP range proposed in [2] (refer to Table V) conservatively explains the parameter uncertainty bound of HEP
overall. However, it is difficult to estimate the parameter uncertainty of HEPs smaller than 1.0E-03. In particular, additional
research is needed regarding the fact that an FPtp lower than 1.E-03 has a high error factor.

In addition, this study suggests that the determination rule in Table V can be modified to predict the uncertainty bounds
more accurately. Since the trend of error factors varies slightly depending on whether FPtp or FPce is more dominant within
HEP, different rules can be applied depending on their dominance. For example, the error factor of FPce can be anticipated
based on the FPce range, as seen in Table VI. Therefore, after identifying the factor that has a greater impact on HEP between
FPtp and FPce, HRA practitioners can employ either Table IV or VI as the rule for determining the error factor.

TABLE V. Uncertainty bound rule for HEP proposed in [2]
HEP range Error factor
0.5 <= HEP 1
0.03<=HEP<05
0.01 <= HEP < 0.03
0.006 <= HEP < 0.01
0.001 <= HEP < 0.006
HEP < 0.001

RN |w

0

TABLE VI. Uncertainty bound rule for FPce proposed based on Fig. 2

FPce range Error factor
0.5 <= FPce 1

0.07 <= FPce <05 2

0.03 <= FPce < 0.07 3

0.001 <= FPce <0.03 4

FPce <0.001 10
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IV. CONCLUSION AND FUTURE WORKS

This study extended the Monte Carlo analysis developed in [2] to generate samples additionally considering the
distributions of component parameters related to local manipulations and recovery behaviors and discussed parameter
uncertainty rules that can apply to the results of HRA. Since many component parameters are mostly represented by lognormal
distributions [2,5,6,11], it seems statistically appropriate to interpret HEP uncertainties with lognormal models. Therefore, the
results of this paper reverified that the determination rule proposed in [2] conservatively describes the distribution of error
factors with the assumption that simulated HEPs follow lognormal distributions. That is, it is judged that the results of Table V
provide a reasonable approximation according to the parameter uncertainty rule of the EMBRACE method. For a more precise
estimation, combining Table IV and Table VI can be a beneficial alternative by identifying which factor more significantly
contributes to HEP among FPtp and FPce. These suggestions are believed to be realistic and pragmatic because a lot of human
performance times are described with lognormal distributions [11] and because HEPs in existing PSA models are often assumed
to be lognormally distributed with their uncertainties expressed using error factors. However, it should also be noted that HRA
methods can have different distributions for uncertainty assessments depending on the purpose of the HRA application or the
combination with a PSA model. In addition, more evidence should be generated to gain a clearer understanding of parameter
uncertainty calculations through additional data collection and collaboration with HRA/PSA practitioners.

It is noted that this study used exponentiated mu to scrutinize the tendency of the error factor. The exponentiated mu implies
the median value of HEP, which may differ from the mean value. In particular, low HEP values are expected to have a large
difference between the median and the mean. We believe that additional research is needed on the accuracy of parameter
uncertainty estimation in such cases.
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