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ABSTRACT 

 

In the event of a nuclear power plant accident, the release of radioactive materials into the atmosphere is likely to spread 

over a wide area, making the atmosphere the primary medium for human exposure. Therefore, it is essential to assess the 

dispersion of radioactive material for conducting an offsite consequence analysis. Most offsite consequence analysis codes 

utilize the Gaussian plume model for atmospheric dispersion analysis. The dispersion coefficient is a critical factor that 

determines the vertical and horizontal concentration distribution in the downwind direction of the Gaussian plume model. A 

majority of dispersion coefficients are calculated based on the Pasquill-Gifford curve, which was developed for flat terrain, and 

various fitting equations have been proposed to utilize it effectively. In this study, several dispersion coefficients, including 

Tadmor-Gur, Eimutis-Konicek, Briggs, Martin, and Seinfeld, were investigated and applied to offsite consequence analyses. 

Radiological Consequence Analysis Program (RCAP) developed by Korea Atomic Energy Research Institute (KAERI) and 

MELCOR Accident Consequence Code System (MACCS) developed by Sandia National Laboratories (SNL) were employed 

to perform offsite consequence analyses. Subsequently, the influence of the dispersion coefficient on the offsite consequences 

was analyzed. The results of this study highlight how the selection of dispersion coefficients in Gaussian plume models can 

affect offsite consequences. The insights gained from this study are expected to contribute to future Level 3 probabilistic safety 

assessments (PSAs) and emergency planning zone (EPZ) assessments. 
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I. INTRODUCTION 

 

PSA (Probabilistic Safety Assessment) has continued to evolve as an effective and systematic tool for identifying and 

evaluating risks associated with nuclear facilities. It is generally categorized into three levels according to the protective 

boundaries of a nuclear power plant: Level 1 evaluates core damage frequency, Level 2 addresses containment failure and 

radioactive release, and Level 3 assesses the radiological impact on the environment and the public. Among them, Level 3 PSA 

aims to quantify the consequences of radioactive materials released into the environment, particularly through atmospheric 

dispersion and deposition, and its resulting impact on surrounding populations and ecosystems. In recent years, the significance 

of Level 3 PSA has become increasingly prominent due to growing societal concern and enhanced regulatory demands. 

In the event of a nuclear accident, the atmosphere serves as the primary pathway through which radioactive materials can 

exert the most significant short-term impact on the environment and the public. Accordingly, atmospheric dispersion models 

are employed to quantitatively evaluate the transport and dispersion behavior of released radionuclides. These models are used 

to predict the atmospheric concentration distribution of the released radioactive material and the resulting radiation dose. 

Among such models, the Gaussian plume model is one of the most widely adopted, which assumes that the concentration of 

released contaminants follows a Gaussian distribution in both the horizontal and vertical directions relative to the plume 

centerline. 

In this process, the dispersion coefficient is a key parameter in quantifying the extent of plume spread in the atmosphere, 

directly influencing the accuracy of concentration distribution and dose prediction. Dispersion coefficients are typically derived 

from Pasquill-Gifford (P-G) fitting curves [1] based on the results of the Prairie Grass experiment [2], and a variety of empirical 

fitting expressions have been proposed to put them into numerical form. They are expressed in various equation forms 

depending on the differences in experimental conditions and the range of meteorological factors considered in each model. The 

selection of dispersion coefficient models can result in considerable variations in prediction outcomes depending on 
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atmospheric stability conditions, particularly affecting the spatial characteristics of plume dispersion and the subsequent offsite 

consequence assessment. Therefore, the choice of dispersion coefficient model should be considered as a factor directly related 

to the reliability and quantitative validity of offsite impact predictions, and a more careful and systematic approach is required. 

This study compares the characteristics of five dispersion coefficient models—Tadmor-Gur, Eimutis-Konicek, Briggs, 

Martin, and Seinfeld—and conducts offsite impact assessments using the Radiological Consequence Analysis Program (RCAP) 

and the MELCOR Accident Consequence Code System (MACCS) to quantitatively evaluate the differences among the models. 

The results provide a quantitative understanding of the sensitivity of the choice of dispersion coefficient model to the results 

of the offsite impact assessment, and contribute to the development of model selection criteria for conducting more reliable 

Level 3 PSAs in the future. 

 

 

II. METHODOLOGY 

 

II.A. Atmospheric Dispersion Modeling using Gaussian Plume Approach 

 

In this study, the Gaussian plume model was employed to evaluate the atmospheric dispersion of radioactive materials 

released during a nuclear accident. This model defines the spatial concentration distribution of the plume based on the standard 

deviations of the Gaussian distribution in the horizontal (𝜎𝑦) and vertical (𝜎𝑧) directions. The dispersion of the plume occurs 

in all directions due to atmospheric turbulence, with vertical dispersion being particularly influenced by surface roughness and 

thermal structures of the atmosphere, such as inversion layers. In contrast, horizontal dispersion is less constrained and is further 

enhanced by plume meandering along the centerline. Dispersion in the downwind direction is generally negligible due to the 

significantly lower turbulence velocity compared to the mean wind speed. Owing to its simplicity and computational efficiency, 

the Gaussian plume model is widely used to simulate the dispersion of radioactive materials in the atmosphere following reactor 

accidents. When the plume dispersion is not constrained by surface contact or inversion layers, the concentration distribution 

is defined by the Gaussian plume equation introduced by Turner [3]. 
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In Equation 1, χ denotes the time-integrated atmospheric concentration, 𝑄 represents the emission rate of the pollutant 

from the source, and ℎ is the effective release height. The coordinates x,  y, and z refer to the downwind, crosswind, and vertical 

distances, respectively. 𝜎𝑦  and 𝜎𝑧 represent the standard deviations of the concentration distribution in the crosswind and 

vertical directions. The parameter 𝑢 denotes the mean wind speed at the effective release height. 

 

II.B. Atmospheric Dispersion Parameters 

 

II.B.1. Atmospheric Stability 

 

To apply the Gaussian plume model for evaluating atmospheric dispersion, it is first necessary to determine the atmospheric 

stability of the environment under consideration. Atmospheric stability is typically classified based on meteorological 

observation data, using empirical schemes proposed by Pasquill and Gifford [4]. The classification criteria for stability 

categories are presented in Table I, which are established by comprehensively considering meteorological parameters such as 

wind speed, solar radiation, and cloud cover. Since the dispersion characteristics of a plume vary significantly depending on 

the atmospheric stability class, the corresponding dispersion coefficients also exhibit marked differences across stability 

conditions. 

 

Table I. Pasquill-Gifford Atmospheric Stability 

Wind speed (m/s) 

Day time – Solar Radiation Night time – Cloud cover 

Strong Moderate Slight Cloudy Clear 

< 2 A A-B B - - 

2 − 3 A-B B C E F 

3 − 5 B B-C C D E 
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5 − 6 C C-D D D D 

> 6 C D D D D 

A: Very unstable / B: Moderately unstable / C: Slightly unstable / D: Neutral / E: Slightly stable / F: Stable 

 

II.B.2. Dispersion Coefficient  

 

In this study, a total of five dispersion coefficient models were employed for analysis. Dispersion coefficients are calculated 

based on the determined atmospheric stability and are classified into horizontal dispersion coefficients 𝜎𝑦  and vertical 

dispersion coefficients 𝜎𝑧. One of the most representative atmospheric dispersion experiments, the Prairie Grass experiment, 

was conducted in 1956 in O’Neill, Nebraska, USA. This experiment demonstrated that the dispersion behavior within a range 

of approximately 1 km could be predicted by considering meteorological parameters such as atmospheric stability and wind 

direction variability. Based on the results of this experiment, Pasquill and Gifford established curves representing horizontal 

and vertical dispersion coefficients according to atmospheric stability, which have since served as a reference standard for 

various dispersion models (Fig. 1). 

Among the models considered, the Tadmor-Gur and Briggs models are empirical formulations that differ from the 

conventional Pasquill-Gifford (P-G) curve-based models, yet are widely applied both domestically and internationally as 

representative dispersion coefficient models. The remaining models are derived by fitting empirical equations to the P-G curves, 

mathematically expressing the dispersion characteristics associated with each stability class. The equations for each dispersion 

coefficient model, along with the major meteorological parameters considered, are summarized in Table II. 

 

 
Figure 1. Pasquill-Gifford (PG) Curves [5] 

 

Table II. Dispersion Coefficient Models 

Model Equation Meteorological Factors 

Tadmor-Gur (1969) 𝜎𝑦 = 𝑎𝑥𝑏, 𝜎𝑧 = 𝑐𝑥𝑑 Distance (𝑥), Stability Class (A-F) 

Eimutis-Konicek (1972) 
𝜎𝑦 = 𝐴𝑥0.9031 (𝐴 = 𝑘1𝜎𝜃

2 + 𝑘2𝜎𝜃 + 𝑘3) 

σz = cxd + f 

Distance (𝑥), azimuthal wind direction fluctuations (𝜎𝜃), 
lapse rate (Δ𝑇)  

Briggs (1973) 
𝜎𝑦 = 𝐴x(1 + 0.001x)−1/2 

σz = Bx(1 + Cx)𝐷 
Distance (𝑥), Stability Class (A-F) 

Martin (1976) 𝜎𝑦 = 𝑎𝑥0.894,  𝜎𝑧 = 𝑐𝑥𝑑 + 𝑓 Distance (𝑥), Stability Class (A-F) 

Seinfeld (2006) 
𝜎𝑦 = 𝑅𝑦𝑥

𝑟𝑦 ,  𝜎𝑦 = exp⁡[𝐼𝑦 + 𝐽𝑦 ln 𝑥 + 𝐾𝑦(ln 𝑥)
2] 

𝜎𝑧 = exp⁡[𝐼𝑧 + 𝐽𝑧 ln 𝑥 + 𝐾𝑧(ln 𝑥)
2] 

Distance (𝑥), Stability Class (A-F) 

 

The Tadmor-Gur dispersion coefficient [6] is developed based on the results of the Prairie Grass field experiment. Previous 

studies proposed dispersion coefficient equations in the form of a power law. Fuquay et al. [7] experimentally demonstrated 
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that the horizontal dispersion coefficient 𝜎𝑦 is proportional to (𝜎𝜃𝑢̅)𝑡
𝑝, while Smith and Singer [8][9] expressed dispersion as 

a power-law relationship in the form of 𝜎=𝑎𝑥𝑝 . Tadmor and Gur applied this 𝜎=𝑎𝑥𝑝  formulation separately for each 

atmospheric stability class (A–F), reporting good agreement between the fitted expressions and the graphic curves presented 

by Gifford. 

The Eimutis-Konicek dispersion coefficient [10] defined continuous expressions for both horizontal and vertical dispersion 

coefficients (𝜎𝑦 and 𝜎𝑧) as functions of downwind distance (𝑥) and meteorological parameters such as the standard deviation 

of wind direction fluctuations (𝜎𝜃) and lapse rate (𝛥𝑇). The horizontal dispersion coefficient is primarily influenced by distance 

and wind direction fluctuations, while the vertical dispersion coefficient also incorporates the effects of lapse rate. In this model, 

𝜎𝑦 is based on the Tadmor-Gur model [6], with further refinement through regression analysis using the standard deviation of 

wind direction fluctuations. 𝜎𝑧 is derived from a piecewise function structure originally proposed by Martin [11]. 

The Briggs dispersion coefficient [12] integrated the Pasquill, BNL (Brookhaven National Laboratory), and TVA 

(Tennessee Valley Authority) curves based on observations up to 10 km downwind and applies theoretical concepts related to 

the asymptotic limits of the formulas to develop a set of empirical equations. According to this model, the initial plume spread 

under all atmospheric stability conditions is proportional to the downwind distance (𝑥), and at long distances, the horizontal 

dispersion coefficient 𝜎𝑦 follows a 𝑥1/2 dependence, consistent with the Fickian and Taylor theories of diffusion. 

The Martin dispersion coefficient [13] is introduced to improve upon the mathematical limitations of Turner’s formulation. 

While Turner modeled 𝜎𝑦 as a curved function based on experimental data, it was argued that if 𝜎𝑦 truly follows a power-law 

relationship with distance (𝑥), it should appear as a straight line on a log–log plot. Accordingly, Martin removed the constant 

term in the 𝜎𝑦 equation to ensure that the transformed function remains linear when plotted on a logarithmic scale. 

The Seinfeld dispersion coefficient [14] is formulated using an exponential equation with three parameters, derived from 

PG curves. The coefficient expresses the vertical dispersion coefficient 𝜎𝑧  as a function of ln(𝑥), enabling a more refined 

representation of distance dependence. The coefficient is based on a collection of experimental data from multiple studies, 

including Gifford (1976), Weber (1976), AMS Workshop (1977), Doran et al. (1978), Sedefian and Bennett (1980), and Hanna 

et al. (1982). The applicability of the empirical expression is limited to downwind distances of up to 10 km, with a 

corresponding formulation also available for 𝜎𝑦. 

 

 

II.C. Offsite consequence Assessment Tools 

 

II.C.1. RCAP code 

 

RCAP (Radiological Consequence Analysis Program) [15] is a computational tool developed by the Korea Atomic Energy 

Research Institute (KAERI) to probabilistically assess the radiological impact on surrounding areas in the event of a radioactive 

release from a nuclear facility. The program is designed to model the atmospheric dispersion and transport of released 

radionuclides, as well as their deposition onto the ground surface, enabling quantitative evaluation of both short-term 

consequences and long-term environmental and health effects. RCAP employs the Gaussian plume model as its physical model. 

 

II.C.2. MACCS code 

 

MACCS (MELCOR Accident Consequence Code System) [16] is an analytical code developed by Sandia National 

Laboratories (SNL) to probabilistically estimate the offsite consequences of potential severe accidents at nuclear power plants. 

The code allows for the modeling of hypothetical radioactive release scenarios and is designed to comprehensively evaluate 

their impacts on human health and the economy. It incorporates a wide range of factors, including atmospheric dispersion and 

transport, wet and dry deposition, environmental transfer, protective action strategies, radiation dose assessment, health effects, 

and economic damages. Although MACCS is configured to accommodate both the Gaussian plume model and the HYSPLIT 

model as selectable physical models, this study adopts the Gaussian plume model as the default within MACCS to ensure 

consistency in the comparative analysis between the two codes. 

 

 

III. RESULTS AND DISCUSSION  

 

III.A. Dispersion Coefficients by Atmospheric Stability Class 
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This study conducted a comparative analysis of five previously introduced dispersion coefficient models under six 

atmospheric stability classes and downwind distances up to 30 km, which corresponds to the maximum boundary of the Urgent 

Protective Action Planning Zone (UPZ) [17]. The key findings can be summarized in two main points. First, the differences in 

dispersion coefficients among models tend to increase with distance. Second, the model exhibiting the highest or lowest 

dispersion performance varied depending on the atmospheric stability condition. The corresponding results are presented in 

Fig. 2. 

Under unstable atmospheric conditions (Stability Classes A, B, and C), the Briggs model consistently produced the lowest 

values for both horizontal and vertical dispersion coefficients. For horizontal dispersion, the Martin, Tadmor-Gur, and Modified 

Tadmor-Gur models generally yielded higher values; however, excluding the Briggs model, most models exhibited similar 

patterns and magnitudes. In contrast, vertical dispersion coefficients showed more pronounced variation, with the Seinfeld and 

Tadmor-Gur–based models displaying significantly higher values compared to others. 

Under neutral atmospheric conditions (Stability Class D), the Briggs model again produced the lowest horizontal dispersion 

coefficients, while the Tadmor-Gur–based models yielded the highest. In contrast, vertical dispersion coefficients exhibited 

similar patterns and magnitudes across all models, indicating minimal differences among them.  

Under stable atmospheric conditions (Stability Classes E and F), the Briggs model produced the lowest coefficients in both 

horizontal and vertical directions. The Eimutis-Konicek, Tadmor-Gur, and Modified Tadmor-Gur models yielded the highest 

horizontal dispersion coefficients, while the Modified Tadmor-Gur model resulted in the highest vertical dispersion coefficients. 

As previously mentioned, the Eimutis-Konicek model adopts the dispersion coefficients of the Tadmor-Gur model in the 

horizontal direction and those of the Martin model in the vertical direction. Consequently, its results are largely overlapped by 

these models and are not clearly distinguishable in the plots. 

Subsequently, an analysis was conducted for four atmospheric stability classes, excluding the extreme conditions 

represented by classes A and F among the six standard categories. For each of the four stability classes, the two models with 

the greatest difference in dispersion coefficients were identified, and their ratios were averaged to assess overall divergence. 

The results indicated that, at a distance of 5 km, the horizontal dispersion coefficient showed a marginal difference of 

approximately 0.99 times, while the vertical dispersion coefficient differed by about 1.4 times. At 30 km, the horizontal 

dispersion coefficient exhibited a difference of approximately 1.35 times, and the vertical dispersion coefficient showed a 

pronounced variation of up to 3 times.  
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Figure 2. Distributions of Horizontal (𝝈𝒚) and Vertical (𝝈𝒛) Dispersion Coefficients by Stability Class for Each 

Model  

 

 

III.B. Offsite Impact Assessment using RCAP and MACCS  

 

In this study, a comparative analysis was conducted to evaluate the impact of different dispersion coefficient models using 

the RCAP and MACCS codes, based on a reference site located on flat terrain in Korea. All input conditions were kept identical 

across simulations, except for the choice of dispersion coefficient model. A total of six dispersion models were considered. The 

analysis focused on two output indicators that directly reflect the impact of the selected dispersion model: ground-level dilution 

and mean peak dose.  

The wind speed was set to 2.1 m/s, based on the national average observed over the 20-year period from 2004 to 2024 [18], 

and six atmospheric stability classes (A to F) were considered. Receptors were placed at 20 downwind distances ranging from 

0.1 km to 30 km, and in 16 azimuthal directions. Among these, two key assessment points were selected: 5 km, corresponding 

to the maximum boundary of the Precautionary Action Zone (PAZ), and 30 km, corresponding to the maximum boundary of 

the Urgent Protective Action Planning Zone (UPZ) [17]. 

Figure 3 presents a comparison of ground-level dilution predictions across distances for each dispersion coefficient model, 

using both RCAP and MACCS. In this analysis, the ground-level dilution was based on the calculated values for Cs-137, 

selected as a representative radionuclide. Under unstable (A, B, C) and neutral (D) atmospheric conditions, the differences 

between models remained relatively small; however, under stable conditions (E, F), the predicted concentrations varied more 

significantly depending on the dispersion model applied. In addition, regardless of the stability class, the Briggs model 

consistently predicted the highest concentrations as the distance approached 30 km. 

Table III provides a quantitative comparison of model predictions under Stability Class E, where the largest differences 

among models were observed at both 5 km and 30 km. At both distances, the maximum and minimum predicting models were 

the same for RCAP and MACCS, and the magnitude of difference between the two codes was also comparable. At 5 km, the 

Martin model produced the highest predicted concentration, while the Modified Tadmor-Gur model produced the lowest, with 

a difference of up to 1.26 times. At 30 km, the Briggs model yielded the highest value, whereas the Modified Tadmor-Gur 

model yielded the lowest, resulting in a maximum difference of 2.65 times. 



                                      Asian Symposium on Risk Assessment and Management 2025 

www.asram2025.org                                                                                   Pattaya, Thailand, 27 – 29 August 2025  

 

7 

 
 

 
Figure 3. Comparison of Ground-Level Dilution Predictions by Dispersion Coefficient Models under Different 

Atmospheric Stability Conditions (RCAP & MACCS) 

 

 

Table III. Quantitative Comparison of Ground-Level Dilution Predictions at 5 km and 30 km under Stability Class 

E Using RCAP and MACCS 

Ground-

Level Dilution 

(𝒔𝒆𝒄/𝒎𝟑) 
Distance T-G 

Modified 

T-G 
E-K Briggs Martin Seinfeld 

RCAP 5km 4.46E-06 4.27E-06↓ 5.03E-06 4.44E-06 5.39E-06↑ 5.22E-06 
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30km 4.48E-07 2.95E-07↓ 4.71E-07 7.84E-07↑ 5.14E-07 4.83E-07 

MACCS 

5km 4.49E-06 4.26E-06↓ 4.98E-06 4.36E-06 5.34E-06↑ 5.19E-06 

30km 4.48E-07 2.95E-07↓ 4.70E-07 7.81E-07↑ 5.12E-07 4.81E-07 

 

Figure 4 compares the predicted mean peak dose across distances for each dispersion coefficient model using RCAP and 

MACCS. The mean peak dose results are based on the effective whole-body dose equivalent, a representative radiological dose 

metric. Consistent with the ground-level dilution results presented in Figure 3, the differences among models were relatively 

small under unstable (A, B, C) and neutral (D) atmospheric conditions, but became more pronounced under stable conditions 

(E, F). Regardless of stability class, a consistent trend was observed in which the Briggs model predicted the highest mean peak 

dose as the distance approached 30 km. 

Table IV provides a quantitative comparison of mean peak dose predictions at 5 km and 30 km under stability class F, 

where the differences among models were most evident. The values were normalized to the maximum predicted dose at the 

5 km distance to facilitate relative comparison across models. At both distances, RCAP and MACCS showed consistent trends, 

with the same models producing the maximum and minimum predicted doses. At 5 km, the Martin model yielded the highest 

dose prediction, while the Tadmor-Gur model produced the lowest, resulting in a maximum difference of 1.12 times. At 30 km, 

the Briggs model predicted the highest dose, and the Modified Tadmor-Gur model the lowest, with a maximum difference of 

1.77 times. 
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Figure 4. Comparison of Normalized Mean Peak Dose Predictions by Dispersion Coefficient Models under 

Different Atmospheric Stability Conditions (RCAP & MACCS) 

 

 

Table Ⅳ. Quantitative Comparison of Normalized Mean Peak Dose Predictions at 5 km and 30 km under Stability 

Class F Using RCAP and MACCS 

Normalized 

Mean 

Peak Dose 

Distance T-G 
Modified 

T-G 
E-K Briggs Martin Seinfeld 

RCAP 

5km 7.51E-01↓ 7.61E-01 7.63E-01 7.81E-01 8.10E-01↑ 7.98E-01 

30km 4.11E-02 3.36E-02↓ 4.11E-02 5.79E-02↑ 4.47E-02 4.37E-02 

MACCS 

5km 8.95E-01↓ 9.31E-01 9.35E-01 9.60E-01 1.00E+00↑ 9.84E-01 

30km 4.66E-02 3.74E-02↓ 4.66E-02 6.64E-02↑ 5.06E-02 4.92E-02 

 

The observed tendency for greater variation among dispersion coefficient models in ground-level dilution and mean peak 

dose under more stable atmospheric conditions can be attributed to the suppression of vertical and horizontal turbulent diffusion 

in Stability Classes E and F. Under such conditions, atmospheric dispersion becomes more limited, causing the predicted 

ground-level dilutions and mean peak doses to respond more sensitively to the structural form and model-specific differences 

of the dispersion coefficients. 

 

 

Ⅳ. CONCLUSION 

 

This study conducted a comparative analysis of dispersion coefficient models under varying atmospheric stability 

conditions and quantitatively assessed the extent to which the choice of model influences offsite consequence assessment 

results. It was observed that even under identical distances and atmospheric conditions, significant differences exist in the 

predicted horizontal and vertical dispersion coefficients depending on the selected model. These differences tended to become 

more pronounced as the distance from the release point increased. 



                                      Asian Symposium on Risk Assessment and Management 2025 

www.asram2025.org                                                                                   Pattaya, Thailand, 27 – 29 August 2025  

 

10 

The offsite consequence assessment results using RCAP and MACCS showed overall consistent trends. For both ground-

level dilution and mean peak dose, greater discrepancies among dispersion models were observed under more stable 

atmospheric conditions. Notably, the largest differences at both 5 km and 30 km occurred under Stability Classes E and F, 

suggesting that dispersion under such conditions is more sensitive to the structural forms and assumptions of the dispersion 

models. 

At 5 km, both indicators showed that the Martin model predicted the highest values. In contrast, the lowest values were 

predicted by the Modified Tadmor-Gur model for ground-level dilution and by the Tadmor-Gur model for mean peak dose. 

The corresponding differences between the highest and lowest values were up to 1.26 times and 1.12 times, respectively. At 

30 km, both ground-level dilution and mean peak dose were highest with the Briggs model and lowest with the Modified 

Tadmor-Gur model, showing maximum differences of up to 2.65 times and 1.77 times, respectively. 

These findings highlight that even with identical input conditions, the choice of dispersion coefficient model can lead to 

meaningful differences in predicted results. This effect becomes more pronounced under stable atmospheric conditions or at 

longer distances from the source. Consequently, the selection of a dispersion model introduces a notable source of uncertainty 

in offsite consequence assessments, particularly in evaluations that consider long-range distances such as the UPZ. To ensure 

more reliable risk assessments, it is therefore essential to perform prior sensitivity analyses on dispersion coefficient models 

and adopt a systematic approach to selecting the most appropriate model based on the specific purpose and environmental 

conditions of the assessment. 
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