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ABSTRACT 
 

        In nuclear power plants, the rapid and accurate diagnosis of abnormal states is crucial to ensure safe operations and 
mitigate the risk of accidents. This study introduces an operator-centered approach for explainable diagnostics that emphasizes 
human understandability, making complex information accessible to operators when it matters most. By utilizing Multilevel 
Flow Modeling (MFM), this method significantly enhances the interpretability of diagnostic results, enabling operators to grasp 
underlying system behaviors and causal relationships during abnormal states. By integrating explainable artificial intelligence 
(XAI) techniques with MFM, this approach provides visual, intuitive explanations that bridge the gap between advanced AI 
outputs and operator decision-making needs. Through this, operators are better equipped to understand diagnostic insights, 
fostering a sense of trust and confidence in the model’s conclusions, even in challenging situations. 
The proposed approach was tested using simulation data from various abnormal scenarios in nuclear power plants, validating 
model performance with a primary focus on usability and operator comprehension. This operator-centric design is expected to 
lead to improved clarity in understanding diagnostic results, which in turn should increase operator confidence when responding 
to critical situations. By prioritizing human-centered explainable AI applications, this work seeks to support safer, more 
effective nuclear plant operations. Ultimately, it aims to create diagnostic systems that operators can rely on fully during high-
stakes decision-making, thus promoting more resilient plant management in the face of potential risks. 
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I. INTRODUCTION 
 
In nuclear power plants (NPPs), abnormal conditions occurring in individual components can influence surrounding 

monitoring parameters such as flow rate, temperature, and pressure. Operators play an important role in diagnosing such 
situations as specific abnormal events based on alarms and symptoms triggered by changes in these parameters. To support 
operators in this diagnostic task, various classification models based on artificial neural networks (ANNs) have been developed. 
These models also perform diagnoses by learning the patterns of parameter changes associated with abnormal events in the 
input data. However, due to the inherent black-box nature of neural networks, it is difficult to understand how these models 
make their decisions. For operators to trust and effectively utilize the model outputs, it is required that the diagnostic results be 
clearly explained in terms of which parameter changes, which symptoms, led to a specific diagnosis. 

ANNs can address part of their black-box problem by using appropriate explanation methods, enabling them to provide 
users with explanations for their outputs. However, the explanations generated by advanced artificial intelligence (AI) models 
do not necessarily align with the reasoning processes traditionally used by human operators. This mismatch can lead to a gap 
in understanding, thereby limiting the practical usability of such models in operational contexts. Accordingly, an effective 
approach is needed to enhance operator understandability. To address this challenge, the present study aims to explain neural 
network–based abnormal state diagnosis models using explainable AI (XAI) techniques and to present the resulting 
explanations in a manner that is meaningful to human operators. Specifically, the study compares and analyzes explanations 
for an abnormal event: (1) explanations derived from the diagnostic model via XAI, (2) symptom-based explanations 
traditionally used by operators, and (3) causal explanations based on system structure and physical flow using Multilevel Flow 
Modeling (MFM). Through this comparison, we identify parameters that are commonly emphasized across the different 
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explanations as well as those that are not, gaining insight into which aspects are most understandable from the operator’s 
perspective. Based on this comparison, we propose strategies for bridging the gap between AI-generated diagnostic reasoning 
and operator understandability. To clarify the objective of this study, we pose the research question and insight that how 
operators can make use of the explanations provided by XAI techniques. Ultimately, this research aims to support the 
development of diagnostic systems that operators can trust and use effectively, even under abnormal conditions in NPPs. 

 
II. EXPLAINABLE DIAGNOSIS MODEL FOR ABNORMAL EVENT 

 
In this study, we purpose to identify the symptoms associated with specific abnormal events by leveraging both XAI 

techniques and MFM. The contributed symptoms corresponding to the abnormal events diagnosed by the neural network model 
can be analyzed using appropriate XAI methods. Meanwhile, MFM allows for the understanding of physically connected flow 
resulting from abnormalities in specific components or functions. The following sections describe these two methodologies as 
applied in this study. 

 
II.A. Explainable Artificial Intelligence 

 
XAI refers to techniques that provide human-understandable explanations for the decisions made by AI models. In other 

words, XAI helps users understand why a model produced a certain output and which input features contributed most 
significantly to that result. By providing this interpretability, XAI enhances users’ ability to understand and trust the model’s 
decisions, which is particularly important in safety-prioritized domains such as NPP operation. Among them, post-hoc 
explanation methods are commonly used to explain the outputs of already-trained models when given specific input data. These 
methods aim to explain model behavior without altering the internal structure of the model. Among the various post-hoc 
approaches, the XAI technique introduced below has been employed in previous studies to explain the outputs of neural 
network-based diagnostic models in the context of NPP condition monitoring. 

 
II.A.1. Deep Explainer SHAP 

 
Shapley Additive exPlanations (SHAP) is a method that explains model predictions by decomposing them into the 

contributions of individual features [1]. A Shapley value, originally derived from cooperative game theory, represents the 
average marginal contribution of a feature across all possible combinations of features, offering a fair way to quantify each 
feature’s importance in a prediction. Among its variants, Deep Explainer SHAP is specifically designed for application to 
neural networks. It approximates Shapley values by leveraging the structural characteristics of deep learning models. 

Specifically, it extends the principles of the Deep Learning Important FeaTures (DeepLIFT) algorithm, calculating feature 

contributions through activation differences between input data and a baseline across the model’s layers [2]. This integration 
allows it to produce explanations more efficiently than sampling-based SHAP methods. 

 
II.B. Multilevel Flow Modeling 

 
Multilevel Flow Modeling (MFM) is a framework utilized to represent the structure and behavior of complex industrial 

systems—such as NPPs—by capturing their functional objectives, means-end relationships, and causal dependencies within 
mass flow systems and energy flow systems [3, 4]. It facilitates qualitative assessment of system performance by reflecting the 
underlying physical flow mechanisms. In this study, the modeling and analysis of MFM were conducted using MFMSuite, a 
software platform originally developed by the Technical University of Denmark, in conjunction with a graphical editor 
provided by IFE Harden. 

 
III. CASE STUDY 
III.A. Experimental Setup 

 
This study provides diagnostic information that is understandable and trustworthy to human operators by integrating the 

previously introduced methods. The experimental procedure consists of the following sequential steps, through which the 
analysis and discussion are conducted based on the resulting observations: 

(1) The abnormal event diagnosis model training and application to a scenario for case study: A neural network-based 
classification model is trained to diagnose various abnormal conditions in NPPs. The trained model is then applied to case 
scenarios to generate diagnostic outputs. 
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(2) Application of the XAI method to the model’s diagnostic results: To enhance interpretability, the XAI technique are 
applied to the output of the trained model. This step aims to identify which input features most significantly influenced the 
diagnosis of the case abnormal scenario. 
(3) Comparison with actual alarms and symptoms: The diagnostic outcomes and their explanations are compared against 
actual alarm signals and symptoms from the scenario, enabling assessment of how well the AI model’s reasoning aligns 
with human-understandable indicators. 
(4) Analysis of MFM-based consequent trees for the diagnosed event: For the event diagnosed by the model, MFM is used 
to generate and examine the corresponding consequent tree, which captures the causal propagation of functional disruptions 
throughout the system. 
(5) Visualization of diagnostic explanations: The results of the XAI analysis are visualized with highlighting the key system 
by considering physical flow in step (4) [5]. 
 

III.A.1. Abnormal Event Diagnosis Model 
 
In this case study, the diagnosis model was trained using abnormal scenario data obtained from the 3KEYMASTER NPP 

simulator [6, 7]. The model was trained on 23,375 data to classify 15 kinds of abnormal events. The Deep Explainer SHAP 
technique is model-agnostic and can be applied regardless of the model structure. Therefore, the choice of model does not 
affect the applicability of this explanation method. The simple convolutional neural network (CNN) was adopted in this study. 
The structure of the abnormal event diagnosis model used in this case study is as follows. 

 
TABLE I. The Abnormal Event Diagnosis Model Structure  

Layer name Layer type Output shape 
Conv1d Conv1D (None, 391, 16) 

Conv1d_1 Conv1D (None, 391, 32) 
Max_pooling1d MaxPooling1D (None, 195, 32) 

Conv1d_2 Conv1D (None, 195, 64) 
Max_pooling1d_1 MaxPooling1D (None, 97, 64) 

Flatten Flatten (None, 6208) 
Dense Dense (None, 16) 

activation Activation (None, 16) 
 

III.A.2. Multilevel Flow Modeling for Abnormal Events 
 
In this case study, we aim to understand the physical flow associated with each abnormal event by analyzing the 

corresponding consequent trees. To facilitate this, an MFM representation was developed based on the system structure of the 
3KEYMASTER NPP simulator and 15 abnormal events that were used to training data for the diagnostic model. As 
summarized in the table below, the constructed MFM includes a total of six systems, comprising three mass flow systems and 
three energy flow systems. 

 
TABLE II. Systems and Functions including in the MFM Model  

Type System Included components about each function 

Mass flow 
system 

Reactor coolant system 
and chemical volume 

control system 

Cold-leg, reactor pressure vessel, hot-leg, reactor heat remover, pressurizer, 
pressurizer relief tank, steam generator U-tube, letdown heat exchanger, letdown 
demineralizer, volume control tank, charging pump, regenerator, reactor coolant 

pump    

Steam generator and 
secondary system 

Steam generator, main steam system, turbine bypass valve, condensate storage 
tank, turbine, condenser, condensate pump, low-pressure feedwater heater, main 

feedwater pump, high-pressure feedwater heater, moisture separator reheater, 
steam generator blowdown 

Containment spray 
system 

Refueling water storage tank, containment pump, containment spray 

Energy 
flow 

system 

Reactor coolant system 
heat remover 

Fuel, reactor pressure vessel, pressurizer, pressurizer relief tank, steam generator 
U-tube, steam generator, main steam system, turbine, turbine bypass valve, 

condenser, circulating water system 
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Primary component 
cooling system 

Reactor heat removal, letdown heat exchanger, component cooling water system, 
essential service water system 

Electrical system 
Turbine, main generator protection, switchyard, high-voltage 13.8kV, 1E 

medium voltage 4.16kV, diesel generators control, medium voltage 4.16kV 
 

III.B. Case Study with Pressurizer Spray Valve Positioner Failure 
 
In Section III.A, we compare the explanations derived from the CNN model by Deep Explainer SHAP and the MFM-

based model in the context of abnormal event occurrences. We then discuss whether the explanations generated by the neural 
network are comprehensible to plant operators. The consistency between the AI-derived interpretation and the physically 
grounded reasoning provided by the MFM model is examined. Based on this comparison, we identify which information should 
be conveyed to operators and which can be excluded, and propose a visualization method to effectively present the finalized 
diagnostic information. 

 
III.B.1. Explanation Results 

 
In this case study, the abnormal scenario for case study is a Pressurizer Spray Valve Position Failure. This event was 

selected as the case study because, although the event itself is relatively simple, it affects several key parameters such as 
pressurizer pressure and water level. These changes can propagate to other components, making it useful for analyzing system-
wide behavior. While not one of frequent failures, it is representative of control component malfunctions that can lead to 
cascading effects. When this event occurs, the primary symptom is a noticeable decrease in pressurizer pressure. In addition, 
secondary symptoms such as the temperature of the pressurizer spray line and the operation of the pressurizer heaters are also 
affected. Based on these peripheral symptoms and corresponding alarms, plant operators are expected to identify the abnormal 
condition and follow appropriate tasks as prescribed in the operating procedure. The table below presents the explanation results 
from the abnormal event diagnosis model trained in this study by Deep Explainer SHAP, illustrating how the model recognizes 
and explains the pressurizer spray valve failure scenario. 

 
TABLE III. The Explanation Result of Deep Explainer SHAP 

Monitoring parameter Location Description 
Feature 

importance 
hmi_RCSLT459A_VALUE Pressurizer Pressurizer level 1 
hmi_RCSLT459_VALUE Pressurizer Pressurizer level 0.7738 

hmi_RCSTT463A_VALUE Cold-leg RCL-2B delta temperature 0.5072 
hmi_NBXIT6_VALUE Medium voltage 4.16kV LC feeder breaker NBX209 current 0.4248 

movBBHV8000B.avpVlvPos Reactor coolant system HV8000B valve position 0.3779 
movBBHV8000A.avpVlvPos Reactor coolant system HV8000A valve position 0.3614 

vmodEGTV0030.avpVpos 
Component cooling water 

system 
TV30 valve position 0.3536 

hmi_NBXWT15_VALUE Medium voltage 4.16kV 
Engineered safety features transformer 

XNB02 power 
0.3431 

hmi_CVCTT130A_VALUE Letdown heat exchanger 
Letdown heat exchanger outlet 

temperature 
0.3362 

hmi_RCSLT502_VALUE Steam generator Steam generator 2 wide-range level 0.3354 
 
The model diagnosed the event as a Pressurizer Spray Valve Position Failure with a high predicted value, and the Deep 

Explainer SHAP analysis identified pressurizer level as the most important parameter in the diagnosis. In addition, the model 
also utilized other key parameters such as the opening of surrounding valves near the pressurizer spray valve and the cold-leg 
temperature, indicating that it considered a range of contributed parameters in reaching its conclusion. It is worth noting that 
the NPP simulator used in this study is designed to simulate a generic pressurized water reactor, and thus may not fully capture 
the precise symptom progression observed in an actual plant. Nevertheless, the results reveal that the model relies on a set of 
parameters that differ from those typically used by human operators, highlighting a potential gap in understandability and trust. 

We analyze the possible end consequence from the constructed MFM model’s consequence tree that most closely aligns 
with the feature importance identified by the abnormal event diagnosis model. Figure 1 below illustrates the branch of this 
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possible end consequence, which includes the pressurizer, reactor coolant system, and charging system. While the MFM 
consequence tree does not capture all potential symptoms resulting from the pressurizer spray valve malfunction, it effectively 
represents the surrounding flow relationships involving the pressurizer. In this way, the MFM model conveys a flow-based 
understanding that aligns with the operator’s understandable model and supports human-centered interpretability. 

 

 
FIGURE 1. The Consequence Tree Result of the MFM Model 

 
III.B.2. Explanation Visualization 

 
In this study, only the explanation results from the Deep Explainer SHAP results that correspond to operator-

understandable flow paths are visualized. Specifically, parameters that are not represented in the MFM model or do not align 
with the most relevant consequence tree branch were excluded from the visualization. The resulting explanation visualization, 
shown below, highlights components such as the pressurizer, reactor coolant system, and chemical and volume control 
system, while excluding parameter such as the LC feed breaker current, which are less relevant from a flow-based 
understandability perspective. 

 

  
FIGURE 2. Explanation Visualization with Selected Information 

 
IV. CONCLUSIONS 
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AI models have been recently researched to support operator tasks in NPP main control rooms. However, to ensure operator 

acceptance of AI-based diagnostic information, it is need to provide not only the results but also the reasoning in a form that is 
understandable to human operators. XAI techniques offer a way to explain model outputs by identifying key input features that 
influence the model's predictions. In the context of abnormal event diagnosis, several previous studies have sought to apply 
XAI to provide explainability alongside neural network-based decisions. Nevertheless, the parameters identified by XAI as 
contributing to a diagnosis may not always align with operators’ understanding. Presenting such mismatched information can 
lead to confusion rather than clarity. To address this problem, this study examined the diagnostic reasoning of an CNN model 
through the perspective of operator understanding. Using Deep Explainer SHAP, we explained the model’s decisions and 
analyzed the understandability of the resulting feature importance from an operator’s perspective. Additionally, we applied 
MFM to derive the consequence branch for a specific abnormal event scenario, allowing us to cross-check the relevance of 
Deep Explainer SHAP-identified parameters with physical flow-based reasoning. By filtering out provided information that 
did not conform to operator-acceptable flow logic, we visualized a refined set of diagnostic information that better aligns with 
human understandability. This study contributes to propose the human-centered XAI by demonstrating how XAI-based 
explanations can be adapted to the operator understanding in the context of abnormal event diagnosis. While this study 
qualitatively explores explanation understandability, no user study has yet been conducted to quantitatively assess 
improvements in operator understanding and trust. Therefore, future work will involve user-centered experiments to assess 
how the proposed visualization method influences understandability, trust, and usability in practice. Furthermore, it is necessary 
to test various abnormal event cases, not just a single one, to examine the potential for generalization. 
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