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EXTENDED ABSTRACT 

 
        Dynamic probabilistic risk assessment (PRA) methods are being developed to explicitly simulate time-dependent system 
behaviors and stochastic event sequences. These features enable the direct modeling of system dynamics and temporal 
interactions that are difficult to capture using conventional static PRA methods with event and fault trees. One key advantage 
of dynamic PRA is its capacity to represent both aleatory and epistemic uncertainties [1] within a unified computational 
framework. The aleatory uncertainty is stemming from inherent randomness and generally irreducible and the epistemic 
uncertainty arises from incomplete knowledge and potentially reducible through data collection or model refinement. Therefore, 
decomposing these two types of uncertainty is essential for risk-informed decision making, as it allows analysts to identify 
which sources of uncertainty dominate and which can be reduced through additional data or model refinement. This insight, in 
turn, supports more rational and efficient allocation of resources for risk management actions. This study presents a 
generalizable framework based on a continuous Markov chain Monte Carlo (CMMC) method [2], a class of dynamic PRA, to 
quantify and distinguish between epistemic and aleatory uncertainties. A novel metric, the Epistemic-to-Aleatory Ratio ( EAR ), 
is proposed to evaluate the relative contribution of epistemic uncertainty to the overall variance in system-level outcomes. The 
EAR  is conceptually adapted from the Gelman–Rubin convergence statistic [3], which compares between-chain and within-
chain variances for Markov chain Monte Carlo samplings. To demonstrate the effectiveness of the framework, we conduct a 
numerical analysis using a holdup tank model [4], which is a simplified reliability model.  
 

Fig. 1 illustrates a generalized simulation workflow for the CMMC method. The core structure consists of a double-loop 
Monte Carlo sampling procedure. The outermost loop, indexed by 1,...,i N= , corresponds to epistemic uncertainty. In this 
loop, a set of model parameters—such as demand failure probabilities and operational (time-dependent) failure rates—is 
sampled from their respective probability distributions. These sampled parameters remain fixed throughout the corresponding 
inner loop. For each outermost-loop sample, the inner loop, indexed by 1,...,j M= , represents aleatory uncertainty by 
generating stochastic realization of the system’s behaviors. Each realization simulates the system evolution over time steps 
( 0, ,...,t t T= ∆ ).  At each time step t , system transitions—including component demands, operator actions, or external 
disturbances—are determined based on the current system state and operational logic. Component failures or state changes are 
then evaluated probabilistically, using the fixed epistemic parameters. The system state is updated accordingly, and system 
dynamics are re-evaluated. This process continues until the simulation reaches the final time T  or a termination condition is 
satisfied. After repeating this process for all combinations of N epistemic samples and M aleatory realizations, we obtain a total 
of N M×  system-level outcomes ijψ . From these outcomes, we can compute epistemic variance epiv  (between-sequence 
variance) and aleatory variance aleav  (within-sequence variance) as:  
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Then, EAR  is defined as: 
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This metric represents the ratio of epistemic variance to the total variance. 0.5EAR >  implies that epistemic uncertainty 
dominates, guiding the need for data acquisition or model refinement. Conversely, an 0.5EAR <  suggests that aleatory 
uncertainty is more influential, and additional resource investment for data acquisition or model refinement should be 
considered with caution. 
 

To demonstrate the utility of the proposed EAR  metric, we apply the framework to the holdup tank model, which simulates 
water inflow and outflow with probabilistic failures of components (a valve and two pumps) as illustrated in Fig. 2. The 
simulation procedure follows the CMMC workflow in Fig. 1, and the analytical setup is consistent with our previous study [5], 
assuming Pump 1 failed-off as the initiating event and dryout—defined as the tank water level dropping to zero—as the 
endpoint. Epistemic uncertainty is introduced in both demand failure probabilities and time-dependent failure rates. Two cases 
are analyzed: Case A (base case with a unimodal distribution) and Case B (amplified epistemic uncertainty, represented by a 
bimodal distribution). Uncertainty propagation to EAR  is performed via the CMMC method (Fig. 1). The computed EAR 
values for Case A and Case B were 0.19 and 0.52, respectively. These results demonstrate that EAR  is sensitive to the relative 
magnitude of epistemic uncertainty and can support resource allocation decisions in data refinement. 
 

In conclusion, this study presents a generalized framework for decomposing two types of uncertainty, epistemic and 
aleatory uncertainties, in a dynamic PRA using the CMMC method. To quantify the relative contribution of epistemic 
uncertainty to overall system uncertainty, we propose a novel metric, EAR . The application to a holdup tank model 
demonstrates how EAR  can support the prioritization of epistemic uncertainty reduction in risk-informed decision making. 
Future work includes extending the proposed metric toward uncertainty importance evaluations. 
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FIGURE 1. CMMC Simulation Workflow 
 

FIGURE 2. Schematic of Holdup Tank Model 
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