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EXTENDED ABSTRACT

In emergency accident scenarios at nuclear power plants, operators must quickly assess the evolving plant status and
determine appropriate mitigation actions. Real-time forecasting of key parameter trends can significantly enhance situational
awareness and decision-making. While machine learning-based surrogate models have been developed for offline simulation
analysis, their limited ability to process real-time signals restricts their use for operator support. To overcome this, we propose
a latent space-based trend prediction framework using an LSTM Autoencoder and a decoder-assisted forecasting model. By
optimizing predictions in the reconstructed signal space, the proposed approach improves the accuracy and interpretability of
future trend forecasts during critical events.
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Figure 1 Overview of the proposed latent-space-based trend prediction framework.
(1) latent vector prediction minimizing z error, and (2) minimizing y error.

The proposed prediction framework consists of two core components trained in two separate phases. An overview of this
two-phase architecture is illustrated in Figure 1. In Phase 1, an LSTM-based Autoencoder (AE) compresses each 25-
dimensional plant parameter sequence (20 time steps) into an §-dimensional latent vector. The encoder is composed of seven

stacked LSTM layers with decreasing units (512 — 8), each followed by batch normalization to improve convergence. The

decoder mirrors this structure in reverse, expanding the latent representation back into full signal sequences. The AE is trained
to minimize mean squared error between the input and reconstructed output, effectively learning a compact representation of
plant dynamics. This latent space can be visualized using techniques like UMAP or t-SNE to assess the coverage of the training
data and the generalizability of the model.

In Phase 2, a separate LSTM-based prediction model is trained to forecast the next latent vector using the recent plant state.

This predictor receives a 2-step sequence of 743 input variables and consists of five LSTM layers (128 — 8) with dropout

regularization. The predicted latent vector is then passed through the frozen decoder from Phase 1 to reconstruct the future
signal trend. The entire model is optimized end-to-end using the true future sequence as ground truth. Compared to directly
minimizing latent vector error (z-loss), this decoder-assisted training strategy (y-loss) encourages the predictor to capture more
informative and interpretable trends in the plant behavior, leading to higher fidelity forecasting.

The framework is validated using data from the Compact Nuclear Simulator (CNS), covering scenarios such as LOCA (Loss
of Coolant Accident), SGTR (Steam Generator Tube Rupture), and spurious trips. Each includes various operator mitigation
actions. To determine the optimal configuration of the Autoencoder, we performed a sensitivity analysis by varying the number
of LSTM layers, units, and latent dimensions. Among the tested configurations, the best result was achieved using a 14-layer
structure with 512 units per layer and a latent space of 8 dimensions. This model achieved the lowest reconstruction error with
a mean squared error (MSE) of 0.000235 and was used as the base for all subsequent experiments.

To evaluate model performance, both the latent-vector-based model and the full-trend model were trained on the same input
data and evaluated using mean absolute error (MAE), MSE, root mean squared error (RMSE), and dynamic time warping
(DTW). The results are summarized in Table 1. The full-trend prediction model consistently outperformed the latent-vector-
based model across all evaluation metrics.
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Table 1. Prediction Errors by Model Type
Model Type MAE MSE RMSE DTW
Latent Vector Predictor 0.0141 0.0014 0.0177 0.1778
Full-trend Predictor 0.0095 0.0005 0.0122 0.1101

The full-trend model achieved significantly lower DTW, indicating better alignment with the temporal dynamics of the plant
parameters during transient events. This performance can be attributed to the use of the decoder during training, which enforces
learning of the end-to-end mapping between latent space and observable signals. By optimizing prediction in signal space, the
model learns to focus on patterns that matter most for accurate trajectory forecasting.

A qualitative analysis was performed on a LOCA scenario with a stuck-open pressurizer relief valve (PORV), focusing on
three key variables: Cold Leg Temperatures (Loops 2 & 3) and Containment Pressure. Figure 2 shows the prediction results
compared to actual values, with a shaded band indicating a £5% error range. The full-trend model’s output closely follows the
actual signal in all three variables, capturing both transient and steady-state behaviors more effectively than the latent-vector
model.
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Figure 2 Trend prediction results for three key parameters: (1) shows the prediction results using latent vector loss,
while (2) shows results using the full-trend loss strategy with a frozen decoder.

This study presents a latent-space-based trend prediction framework for real-time operator support in small modular reactors.
The combination of a deep LSTM Autoencoder and a decoder-assisted predictor results in significantly improved accuracy and
temporal alignment in accident scenarios. Future work will explore validation strategies for untrained scenarios, as well as
integrate uncertainty quantification methods to improve the robustness and interpretability of predictions in digital control room
environments.
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