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ABSTRACT 

 

        Dispersion fuels exhibit excellent fuel performance and thermal conductivity, coupled with exceptional safety 

characteristics, leading to their widespread use in research and next generation reactors such as High Temperature Gas-Cooled 

Reactors and Pebble-Bed Reactors. However, the arrangement of densely packed dispersion fuel such as Fully Ceramic Micro-

Encapsulated (FCM) fuel is stochastic in nature, resulting in geometric complexity that challenges existing geometric modeling 

methods implemented in Monte Carlo codes. In this paper, we introduce a coupling method for the Optimized Dropping and 

Rolling (ODR) method and the Discrete Element Method (DEM), two explicit modeling methods known for the precise and 

efficient geometric modeling of stochastic media. The aim of this paper is two-fold; firstly, to reduce the high computational 

expense commonly associated with DEM, and secondly, to remove the packing fraction upper limit commonly associated with 

the ODR method. The coupled ODR-DEM method was then verified against particle distributions generated via existing 

explicit modeling methods, and the results showed that the methods are able to generate stochastic medium that exceed the 

particle packing fraction limit seen by the ODR method. The method also showed significant time savings over the original 

DEM, showing that the pre-arrangement of particles via ODR is able to reduce computational expense by DEM by a 

considerable margin. 
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I. INTRODUCTION 

 

The spatial arrangement and modeling of fuel particles in stochastic media is fundamental in many nuclear reactor 

simulations, particularly for micro fuel particles such as TRISO particles, where these fuels comprise of stochastic mixtures of 

spherical fuel and/or poison particles embedded within a matrix. This study is motivated by the resurgence of interest in 

dispersion fuels, driven by recent advancements in research and industrial applications of Fully Ceramic Microencapsulated 

(FCM) Fuels [1] [2] [3] [4] [5], and secondly, the demand for high fidelity dispersion fuel models for use in RMC code, a 

continuous-energy Reactor Monte Carlo neutron and photon transport code currently being developed by the Department of 

Engineering Physics at Tsinghua University, Beijing [6]. 

The ODR method [7] [8] is a robust explicit modeling method, with previous research showing that ODR can generate 

particle distributions at much higher computational efficiencies compared to other explicit methods such as the Classical 

Dropping and Rolling (CDR) method [7] and DEM [9]. However, as the ODR method assumes that all dropped particles remain 

static and immovable, ODR-generated particle distributions are typically less dense than those produced by DEM [9]. On the 

other hand, DEM is a dynamic simulation approach that models the physical interactions between individual particles. While 

it is most suited for modelling high particle packing fraction stochastic media, DEM is inherently computationally intensive 

and time-consuming [9] [10] [11], making it highly unfeasible for the simulation of complex, memory-intensive dispersion fuel 

systems. 

As such, given the motivations cited above, this paper proposes a coupled ODR-DEM Method for high-particle packing 

fraction dispersion fuel modelling, with the goal of generating high packing fraction particle distributions above the density 

constraints of the ODR method, whilst being computationally efficient compared to DEM. To ensure that the paper is self-

contained, we describe the methodology behind the ODR and DEM methods in Sections II.A and II.B respectively, and the 
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coupling method in Section II.C. Section III elaborates on the results of the coupled ODR-DEM method, and in Section IV, 

we summarize and conclude the paper, as well as discuss limitations and future work. 

 

II. METHODOLOGY 

II.A. The Optimized Dropping-Rolling Method 

 

The ODR Method is described below. Certain steps are described briefly as the reader is directed to previous studies [7] 

[8] [12] for further elaboration and pictorial descriptions. 

1) Step 0 (Initiating): A spherical particle is newly generated above the top boundary of the stochastic media, with its 

initial position as 𝑆1
0  =  𝑆(𝑐1

0, 𝑟1), where 𝑐1
0 is the particle center with coordinates (𝑥1

0, 𝑦1
0, 𝑧1

0), and 𝑟1 as the particle 

radius. 

2) Step 1 (Dropping): Particles that may come into contact with the dropping particle are hence identified. The distance 

that the particle drops by just as it comes into first contact with either the bottom of the stochastic media, or other 

particles, is calculated. The particle position is then updated: 

𝑧1
1  =  𝑧2 +  √(𝑟1 +  𝑟2)2 − ((𝑥1

0 −  𝑥)2 +  (𝑦1
0 −  𝑦)2)                                    (1) 

 𝑦1
1  =  𝑦1

0,  𝑥1
1  =  𝑥1

0                                                                 (2) 

𝑆1
1  =   𝑆(𝑐1

1( 𝑥1
1,  𝑦1

1 ,  𝑧1
1), 𝑟1)                                                                   (3)                                   

 

3) Step 2 (Determining the Rolling Angle): The coordinates of 𝑐1
1 are determined: 

 𝑥1
1  =  𝑥2 +  (𝑟1 +  𝑟2)(𝑐𝑜𝑠𝜑)(𝑐𝑜𝑠𝜃)                                                  (4) 

 𝑦1
1  =  𝑦2 + (𝑟1 + 𝑟2)(𝑐𝑜𝑠𝜑)(𝑐𝑜𝑠𝜃)                                                  (5) 

 𝑧1
1  =  𝑧2 +  (𝑟1 + 𝑟2)(𝑠𝑖𝑛𝜑)                                                         (6)   

where θ is the azimuthal angle, and φ is the polar angle. The unique pair of angles (𝜃 ∈ [0, 2𝜋], 𝜑 ∈  [0, 𝜋/2]) is 

determined by the governing equations 4, 5, and 6. The new working basis 𝐵0 = (𝑢0, 𝑣0, 𝑤0) is established by 

applying a rotation defined by angle θ. The matrix that transforms coordinates from the canonical basis (x, y, z) to 

the rotated basis 𝐵0 is denoted as 𝑀0. 

4) Step 3 (Rolling Phase 1): As described in Hitti and Bernacki [7], the initial step involves identifying the particles 

that intersect with the torus defined by the axis, a minor radius 𝑟1, and a major radius of (𝑟1 +  𝑟2). If no particles 

intersect the torus, the updated coordinates of 𝑐1
1 are computed by setting φ = 0 in Eq. 4, 5, and 6.  In this case, the 

algorithm reverts to the initial dropping step, where 𝑆1
0 =  𝑆1

2. However, if particles are found to intersect the torus, 

the method proceeds to identify a particle 𝑆3 for which the angle φ′ is maximized, with 𝜑′ ∈  [0, 𝜑]. By setting 𝑇 =
 𝑐𝑜𝑠𝜑′, the valid values of T correspond to the roots of the following: 

 (𝐾1
2 + 𝐾2

2)𝑇2  −  2𝐾1𝐾3𝑇 + 𝐾3
2  −  𝐾2

2 = 0                                           (7) 

 𝐾2( 𝐾3 − 𝐾1𝑇𝑖)  ≥ 0                                                                 (8) 

where  𝐾1 = 2( 𝑊𝑥𝑐𝑜𝑠𝜃 +  𝑊𝑦𝑠𝑖𝑛𝜃),  𝐾2 = 2 𝑊𝑧,  𝐾3 = (𝑊𝑥
2 + 𝑊𝑦

2 + 𝑊𝑧
2 + 1 −  𝑊2), and the values of 𝑊 

correspond to 𝑊𝑥 =  
 𝑥 − 𝑥2

𝑟1+ 𝑟2
, 𝑊𝑦 =  

 𝑦 − 𝑦2

𝑟1+ 𝑟2
, 𝑊𝑧 =  

 𝑧 − 𝑧2

𝑟1+ 𝑟2
, 𝑊 =  

 𝑟 + 𝑟1

𝑟1+ 𝑟2
 

5) Step 4 (Surface Intersection Check 1): The particle is then checked for intersection with the boundaries of the 

dispersion fuel, as per Hitti and Bernacki [7]. However, for a cylindrical annulus, the governing equations are 

slightly different, as per Feng et al [8]. If the particle drops below the lower surface, we compute 𝜑′𝑛𝑒𝑤  and 

reposition the particle so it touches the surface.  

6) Step 5 (Local Coordinate System Transformation): Prior to the interaction of two colliding particles, a new 

coordinate system (𝛺, 𝐵1) must be established based on the rolling angle 𝛽. For more information on constructing 

this coordinate system, refer to Hitti and Bernacki [7] and Feng et al [8] [12]. In this local coordinate system, the 

position of 𝑐1
2 is expressed as (0;  𝛺 𝑐1

2  ·  𝑐𝑜𝑠 𝛽;  𝛺 𝑐1
2 ·  𝑠𝑖𝑛 𝛽) 

7) Step 6 (Rolling Phase 2): As per Step 3, we identify particles that intersect the torus defined by the axis 𝑐2𝑐3, 

centered at 𝛺 𝑐1
2, with a small radius (𝑟1 and a large radius 𝛺 𝑐1

2. If no particle intersects the torus, we assign 𝛽 = π, 

update the particle’s position, and then check the new position of the dropping particle. If 𝑧1
3 ≤ min(𝑧2, 𝑧3), we 

return to Step 1, setting 𝑆1
0 =  𝑆1

3. In other cases, we must consider a condition not accounted for in Hitti and 

Bernacki’s study [7]: if 𝑧3 < 𝑧1
3 or 𝑧2 < 𝑧1

3, we revert to Step 2, replacing 𝑆2 with 𝑆3. If any particle does intersect the 

torus, we thus search for the particle associated with the smallest verified rolling angle 𝛽′ in the (𝛺, 𝐵1) coordinate 

system, indicating that this particle is the first contacted particle along the dropping particle’s rolling process, where 

𝛽′ is defined as: 

If  𝛽 <  0, 𝛽′ ∈  [−𝜋, 𝛽];                                                                          (9) 
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Else if 𝛽 ≥  0, 𝛽′ ∈  [𝛽, 𝜋];                                                            (10) 

The coordinates of the particle in the transformed basis are also obtained per Eq. 11. By setting  𝑇 = 𝑐𝑜𝑠𝛽′, the 

values of T that solve the system are thus the roots of the quadratic equation in Eq. 7 and 8.  

𝑥⃗1
3 =  0,  𝑦⃗1

3 =  𝛺𝑐1
2 · 𝑐𝑜𝑠 𝛽′,  𝑧1

3 =  𝛺𝑐1
2 · 𝑠𝑖𝑛 𝛽′                                                     (11) 

8) Step 7 (Surface Intersection Check 2): The dropping particle is again checked for intersections with other particles 

and boundary surfaces, following the process in Step 4. 

9) Step 8 (Stability Check): To check the stability of the dropped particle, we utilize the classical test, with the 

projection of the particle centers of the contacting particles onto the horizontal plane being considered. The reader is 

referred to previous work by Hitti and Bernacki [7] for the calculation process. 

 

The ODR Method is highly efficient, working on the assumption that all other particles remain static during the dropping 

process, and neglecting particle dynamics. The utilization of a direct rolling system, although fast, results in the ODR method 

suffering from a lower saturation limit compared to other methods such as DEM, making the particle distributions produced 

by ODR much less realistic that these other methods.  

 

II.B. The Discrete Element Method 

 

The Discrete Element Method (DEM) simulates particle behavior in granular flows by explicitly modeling particle-

particle interactions governed by Newtonian mechanics [13], where particle contacts and individual particle motions acting 

on each particle are considered. Newton’s Second Law is used to determine the net displacement of each particle resulting 

from the cumulative contact forces acting on it, while a force-displacement law is applied to determine the contact forces 

arising from interactions with other particles or the boundaries of the stochastic medium. To determine the forces acting on 

the particle, normal overlap and tangential motion is considered during calculations. The dampened linear spring contact 

force model as discussed in Cundall and Strack [13] is utilized to derive the normal and tangential forces acting upon the 

particle: 

 𝐹𝑛𝑖𝑗  =  (− 𝑘𝑛𝛼3/2 −   𝑐𝑛𝑣⃗𝑖𝑗  𝑛⃗⃗)                                                                   (12) 

 𝐹𝑡𝑖𝑗  =  (− 𝑘𝑡𝛿 −   𝑐𝑡𝑣⃗𝑐𝑡)                                                                        (13) 

 

Where  𝐹𝑛𝑖𝑗 and  𝐹𝑡𝑖𝑗 are the normal and tangential forces acting on the particle respectively; α represents the overlap 

distance between particles; δ is the tangential overlap displacement;  𝑘𝑛 and  𝑘𝑡 denote the linear spring stiffness in the 

normal and tangential directions; 𝑣⃗𝑖𝑗 is the relative velocity of the interacting particles; and 𝑐𝑛 and 𝑐𝑡 are the dashpot 

coefficients in the normal and tangential directions, respectively.  

As DEM considers particle dynamics, it is able to produce highly realistic and accurate particle distributions. However, 

DEM is highly computational expensive, especially in simulations involving large numbers of particles. Hence, there is 

motivation to reduce the high computational cost associated with DEM.  

 

II.C. The Coupled ODR-DEM Method 

 

The coupled ODR-DEM method is described in Fig. 1. ODR is used primarily to place particles within stochastic media 

in a “pre-arrangement” process. Afterwards, DEM is applied to simulate particle dynamics, while random forces are applied 

to the particles to simulate shaking processes, similar to that of existing manufacturing methods in FCM fuel. The post-DEM 

fuel is thus able to achieve packing fractions above the saturation limit of ODR, whilst having a reduced computational 

expense due to the application of ODR to place all particles prior to DEM. 

 

III. RESULTS AND DISCUSSION 

 

The algorithm was implemented as a function within RMC code, and was executed on an AMD Ryzen Threadripper 

3990X 64-Core Processor, utilizing only a single thread for all computations. For each calculation set, 100 independent runs 

were performed, and the averaged result of these runs was used for comparison. In Section III.A, we discuss the performance 

of the coupled ODR-DEM method with respect to the saturation limit of the generated particle distributions. Section III.B 

discusses the effectiveness of the coupled ODR-DEM method with respect to computational expense and accuracy. In 

Section III.C, we discuss limitations and future work.  
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FIGURE 1. The Coupled ODR-DEM Method 

 

III.A. Evaluation of Upper Particle Packing Fraction Limit of the Coupled ODR-DEM Method 

 

In this Section, we utilized a cuboidal stochastic medium filled with mono-spheres as described in Hitti and Bernacki [7], 

and compared the results against the ODR and DEM methods respectively. Table I described the test parameters, whilst 

Table II displays the results for the saturation limit comparison. 

 

TABLE I. Stochastic Medium Parameters 

Parameter Value (cm) 

Length 30.0 

Width 30.0 

Height 35.0 

Particle Radius 1.0 

 

TABLE II. Saturation Limit Comparison between Different Geometry Modeling Methods in RMC 

Method Saturation Limit Standard Deviation 

Optimized Dropping and Rolling Method  0.576 0.0008 

Discrete Element Method 0.638 0.0009 

Coupled ODR-DEM Method 0.638 0.0011 

 

The testing results from the ODR and DEM methods agree with those from current literature [7] [14]. Moreover, it can 

be observed that the coupled ODR-DEM Method is able to produce particle distributions that exceed the saturation limit of 

ODR, similar to those of DEM. 
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III.B. Evaluation of Upper Particle Packing Fraction Limit of the Coupled ODR-DEM Method 

 

In this section, we compare the modelling methods in terms of stochastic media generation time and kinf values between 

DEM and the coupled ODR-DEM Method. Tables III and IV describe the dispersion fuel parameters and fuel particle 

parameters respectively. In particular, in Table IV, Layer refers to the current layer of the particle, starting from the 

innermost layer of the fuel kernel, and Rad refers to the overall particle radius. Rad was varied between 0.150 and 0.350, and 

the particle packing fraction was set to 0.40. The results are shown in Tables V and VI, where the stochastic media generation 

time and kinf values are compared respectively.  

 

TABLE III. Dispersion Fuel Parameters 

Parameter Value 

Boundary Condition Full Reflection 

Radius 9.00 (cm) 

Height 40.00 (cm) 

Matrix Material Graphite 

 

TABLE IV. Particle Parameters for kinf Comparison 

Layer Radius/cm Density/g/cm3 Material 

Fuel Kernel (Rad - 0.085) 12.95 UC 

Layer 1 (Rad - 0.035) 1.050 C 

Layer 2 (Rad - 0.015) 1.900 C 

Layer 3 (Rad - 0.005) 3.160 SiC 

Layer 4 Rad 1.100 C 

 

TABLE V. Stochastic Media Generation Time Comparison between Original DEM and Coupled ODR-DEM Method 

Particle Radius (cm) 
Stochastic Media Generation Time (seconds) 

DEM Coupled ODR-DEM Factor 

0.350 26.357 0.17017 154.88 

0.300 69.782 0.50017 139.52 

0.250 130.40 0.81112 160.77 

0.200 345.32 2.30892 149.56 

0.150 1443.8 9.58053 150.70 

 

TABLE VI. kinf Comparison between Original DEM and Coupled ODR-DEM Method 

Particle Radius (cm) 
Stochastic Media Generation Time (seconds) 

DEM Coupled ODR-DEM 

0.350 1.000958 ± 0.000689 1.001195 ± 0.000648 

0.300 1.001491 ± 0.000596 1.001733 ± 0.000718 

0.250 1.002105 ± 0.000639 1.001638 ± 0.000597 

0.200 1.001859 ± 0.000622 1.002295 ± 0.000712 

0.150 1.000849 ± 0.000590 1.001501 ± 0.000691 

 

As shown in Table V, the couple ODR-DEM Method generates particle distributions with a much reduced generation 

time, with the reduction in computational time by a factor of more than 100 across all particle radii. Furthermore, we can 

observe in Table VI that for all particle radii, the values of kinf between the original DEM and coupled ODR-DEM methods 

are within three standard deviations of each other. It must be noted that as the particle distributions change, the kinf will 

naturally change, hence the kinf values cannot be directly compared with each other. However, this is a good gauge of how 

both processes are able to produce similar particle distributions with similar kinf values. Hence, we can see that the coupled 

ODR-DEM method has achieved its objective of developing particle generations above the saturation limit of ODR, whilst 

being computationally effective against DEM. 

 

 

III.C. Limitations and Future Work 
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There are inherent limitations to the results presented in this paper. Firstly, the computational time reported is solely the 

stochastic media generation time, which does not include processes that are typically considered in the total simulation time, 

such as inactive and active cycle calculations and burnup cycles. As the total simulation time is highly dependent on other 

factors, the proportion of the total simulation time that is spent on stochastic media generation may be much smaller than the 

time spent on other processes. Secondly, it can be observed that the ODR method is mainly used in simulating spherical 

particles, and as such, the coupled ODR-DEM method is limited only to spheres in this paper. This remains a potential area 

for improvement and research. 

Regarding future work, there are a few improvements that we believe can be considered. The main mechanism within the 

coupled ODR-DEM method, where particles are placed via ODR and DEM is used to simulate particle shaking and settling, 

can be iterated for an even greater reduction in computational time. For instance, the configuration of the stochastic media 

may be maintained, and particles then added in via ODR. DEM is then applied to simulate particle dynamics, and the 

“settled” particles can then be “fixed” in space, so that future DEM processes will no longer consider particle dynamics for 

these “settled” portions of the stochastic media, hence reducing computational expense further. In the empty space that 

appears after the particles have been settled, ODR can then be used to place more particles, and this iterates until the required 

packing fraction is achieved. This method is algorithmically more complex, but it should promise even greater time savings.  

 

IV. CONCLUSIONS 

 

The ODR and DEM methods are well-established and extensively studied explicit modeling approaches, yet each comes 

with inherent limitations. Specifically, the ODR method does not account for particle dynamics and has a low saturation limit, 

while DEM is computationally intensive. To address these shortcomings, this work introduces the coupled ODR-DEM 

methods, designed to efficiently generate high packing fraction particle distributions that surpass the density limitations of 

ODR alone. The coupled ODR-DEM method successfully achieved packing densities beyond the ODR’s upper threshold, 

comparable to those produced by DEM. 

Moreover, when evaluated with variable particle radii, the coupled ODR-DEM method demonstrated significantly higher 

computational efficiency than DEM, while still producing particle arrangements with similar randomness and kinf values—

preserving both accuracy and reliability. As such, we consider this approach to be a valuable advancement in the modeling and 

simulation of dispersion fuel microstructures. Additionally, it holds potential for broader application in fields that rely on DEM, 

including granular flow and stochastic media containing non-spherical particles. 
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