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ABSTRACT 
 

        Binary Decision Diagrams (BDDs) are fundamental data structures for Boolean function manipulation, but their size 
depends exponentially on variable ordering—an NP-complete optimization problem. We present a quantum-inspired 
reinforcement learning (QIRL) algorithm that combines quantum inspired principles with classical optimization to efficiently 
find near-optimal variable orderings. The algorithm employs four adaptive phases: quantum exploration using superposition 
states, classical exploitation via Q-learning, pattern-based optimization, and quantum tunneling for escaping local minima. 
Experimental results on hierarchical dependency and deceptive local minima benchmarks (sizes 32-128) demonstrate 
performance improvements over traditional sifting and simulated annealing algorithms. These results show the effectiveness 
of quantum-inspired approaches for combinatorial optimization problems. 
 

Keywords: Binary Decision Diagrams, Quantum-inspired computing, Reinforcement learning, Variable ordering 
optimization 

 
I. Introduction 

 
Binary Decision Diagrams (BDDs) are widely used data structures for representing and manipulating Boolean functions 

in various domains including circuit design, formal verification, and reliability analysis [1]. The efficiency of BDD-based 
algorithms critically depends on the chosen variable ordering, as different orderings can result in exponentially different BDD 
sizes. Finding an optimal variable ordering that minimizes the BDD size is known to be NP-complete [2], making it a 
challenging combinatorial optimization problem. 

Traditional approaches to BDD variable ordering include static heuristics based on structural analysis (depth-first search, 
top-down left-right) and dynamic optimization algorithms. The sifting algorithm [3] iteratively improves orderings through 
local variable repositioning, while simulated annealing applies stochastic optimization principles. While these methods work 
reasonably well for small to medium-sized problems, they often struggle with larger instances, particularly those with complex 
dependency structures or deceptive fitness landscapes containing numerous local optima. Jung et al. [4] demonstrated that even 
specialized algorithms for coherent fault trees face scalability challenges, with BDD size being drastically dependent on 
variable ordering choices. 

Recent advances in quantum computing have inspired new classical algorithms that borrow quantum mechanical principles 
such as superposition and entanglement [9, 10]. These quantum-inspired algorithms have shown promise in various 
optimization domains by enabling more effective exploration of solution spaces. Similarly, reinforcement learning has emerged 
as a powerful paradigm for sequential decision-making problems, learning optimal policies through interaction with the 
environment [8]. 

Quantum-inspired reinforcement learning (QIRL) represents a promising direction that combines these two paradigms. 
Beloborodov et al. [13] recently applied QIRL to the Ising energy minimization problem using a Rescaled Ranked Reward 
method, achieving strong performance on Max-Cut instances. However, their approach maintains a single quantum state and 
relies on ranked rewards for escaping local optima. In contrast, our method employs dynamic phase rotations and entanglement 
groups that continuously learn variable relationships, providing more nuanced control specifically designed for permutation-
based problems like BDD ordering. 

Other QIRL approaches have focused on different aspects of combinatorial optimization. Khairy et al. [14] optimized 
QAOA parameters using RL agents, demonstrating generalization from small to large instances. While effective for continuous 
parameter optimization, BDD ordering requires handling discrete permutation spaces with structural constraints—a challenge 
we address through our four-phase adaptive framework rather than single-mode optimization. SimCIM by Tiunov et al. [15] 
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excels at Ising problems through continuous relaxation but lacks the structural awareness needed for maintaining variable 
relationships throughout BDD optimization. 

This paper introduces a novel quantum-inspired reinforcement learning algorithm that specifically addresses the unique 
challenges of BDD variable ordering optimization. The key innovation lies in maintaining a superposition of multiple variable 
orderings that evolve through quantum-inspired operations, while using reinforcement learning to guide local optimization 
decisions. Our approach introduces several novel mechanisms: (1) dynamic phase rotations that encode learned position 
preferences for each variable, (2) continuously updated entanglement groups that capture and preserve variable relationships, 
and (3) an adaptive four-phase framework that balances quantum exploration, classical exploitation, pattern recognition, and 
quantum tunneling based on optimization progress. 

 
II. Problem Formulation and Proposed Method 

 
II.A. BDD Variable Ordering Problem 

 
Given a Boolean function 𝑓: {0,1}௡ → {0,1}  over variables {𝑥ଵ, 𝑥ଶ, . . . , 𝑥௡} , a BDD is a directed acyclic graph 

representation where each non-terminal node is labeled with a variable and has two outgoing edges (0-edge and 1-edge), and 
terminal nodes represent Boolean values [1]. The size of a BDD, measured by the number of non-terminal nodes, depends on 
the variable ordering 𝜋: {1,2, . . . , 𝑛} → {1,2, . . . , 𝑛}, where 𝜋(𝑖) denotes the position of variable 𝑥௜. 

The optimization problem seeks to find (1): 
 

 𝜋∗ = arg min
గ∈௽೙

|𝐵𝐷𝐷(𝑓, 𝜋)| (1) 

 
where 𝛱௡  is the set of all 𝑛!  possible permutations and |𝐵𝐷𝐷(𝑓, 𝜋)|  denotes the BDD size under ordering 𝜋 . The 

exponential size of the search space and the lack of obvious gradient information make this a challenging discrete optimization 
problem [5]. 

 
II.B. Quantum-Inspired State Representation with Phase and Entanglement 

 
Our algorithm maintains a quantum-inspired state representing a superposition of 𝐾 variable orderings, borrowing 

concepts from quantum computing (2) [11]: 
 

 อ𝛹⟩ = ෍ 𝛼௞

௄

௞ୀଵ

𝑒௜థೖอ 𝜋௞⟩ (2) 

 
where |𝜋௞⟩ represents the 𝑘-th ordering, 𝛼௞ is the amplitude with ∑ |𝛼௞|ଶ௄

௞ୀଵ = 1, and 𝜙௞ is the phase factor. When 
measuring the state, the probability of obtaining ordering 𝜋௞ is 𝑃(𝜋௞) = |𝛼௞|ଶ. 

Beyond the basic superposition, QIRL maintains two critical quantum-inspired structures: 
Phase Rotations: Each variable 𝑥௜ has an associated phase rotation 𝜃௜ ∈ [0,2𝜋] that encodes its preferred position in the 

ordering. These phases are learned from successful orderings using (3): 
 

 𝜃௜
(௧ାଵ)

= 𝜆𝜃௜
(௧)

+ (1 − 𝜆) ⋅
2𝜋 ⋅ pos(𝑥௜)

ordering_length
 (3) 

 
where 𝜆 is a decay factor (typically 0.8) and pos(𝑥௜) is the average position of variable 𝑥௜ in recent successful orderings. 

This phase information guides the generation of new orderings by suggesting optimal positions for each variable. 
Entanglement Groups: The algorithm maintains entanglement sets ℰ = {𝐸ଵ, 𝐸ଶ, . . . , 𝐸௠}, where each 𝐸௜ contains 

variables that exhibit strong correlations in high-quality orderings. Variables 𝑥௜ and 𝑥௝ are considered entangled if their 
average proximity in good orderings is below a threshold (4): 

 

 entangled൫𝑥௜ , 𝑥௝൯ = True ⇔
1

|𝑆|
෍ หpos

గ
(𝑥௜) − pos

గ
൫𝑥௝൯ห

గ∈ௌ

<
𝑛

5
 (4) 
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where 𝑆 is the set of successful orderings. These entanglement groups capture structural relationships and guide both the 
generation of new orderings and quantum tunneling operations. 
 
II.C. Four-Phase Optimization Framework 
 

Phase 1: Quantum Exploration generates diverse candidate orderings by measuring the quantum state and applying 
quantum-inspired transformations. The state initialization creates orderings using various patterns, with phase information 
guiding variable placement. When applying transformations, the algorithm uses learned phase rotations to determine rotation 
amounts and consulting entanglement groups to preserve learned relationships. 

 
Phase 2: Classical Exploitation employs Q-learning [8] for local optimization. The state space encoding incorporates 

phase-based position features, using the difference between current and preferred positions (from phase rotations) as part of 
the state representation. Actions are biased toward moves that align with learned phase preferences. 

 
Phase 3: Pattern-Based Optimization learns and exploits structural patterns from the evaluation history. This phase 

directly utilizes variable position preferences derived from phase rotations, variable groupings from entanglement 
relationships, and adjacency strengths between entangled variable pairs. New orderings are constructed by placing variables 
according to their phase-encoded positions while maintaining entanglement group cohesion. 

 
Phase 4: Quantum Tunneling enables escape from local minima through non-local transformations. The tunneling 

operations are guided by phase shift transformations that use accumulated phase information to determine optimal rotation 
amounts, and entanglement-based rearrangements that restructure orderings while preserving learned variable relationships. 
The intensity of tunneling increases with stagnation duration, but learned relationships are always respected. 
 
II.D. Learning Variable Positions and Relationships 

 
The algorithm continuously updates its understanding of optimal variable positions and relationships: 

 
    // Update phase rotations for position learning 
    for each variable xi: 
        positions = [position of xi in each good ordering] 
        avg_position = mean(positions) 
        scaled_position = (avg_position / n) * 2π 
        θi = 0.8 * θi + 0.2 * scaled_position 
     
    // Update entanglement groups for relationship learning 
    for each pair (xi, xj): 
        proximities = [|pos(xi) - pos(xj)| in each good ordering] 
        avg_proximity = mean(proximities) 
        if avg_proximity < n/5: 
            add_to_entanglement_group(xi, xj) 

 
These learned structures directly influence optimization by: - Biasing new ordering generation toward learned positions - 

Preserving variable relationships during transformations - Guiding escape from local minima while maintaining structural 
insights 

 
II.E. Adaptive Phase Selection 

 
The algorithm dynamically selects phases based on their historical success rates (5): 
 

 𝑤௜
(௧ାଵ)

= 0.1 + 0.9 ⋅
𝑆௜

∑ 𝑆௝
ସ
௝ୀଵ

 (5) 
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where 𝑆௜  tracks the cumulative success count for phase 𝑖 . Additional heuristics ensure adequate exploration in early 
iterations and increased tunneling during extended plateaus. This adaptive mechanism allows the algorithm to respond to the 
optimization landscape characteristics. 

. 
II.F. Algorithm Structure 

 
Input: Boolean function f, time limit T 
Output: Best ordering π*, BDD size s* 
 
1: Initialize quantum state Ψ with K superpositions 
2: Initialize Q-table, phase rotations θ, entanglement groups E 
3: π* ← random ordering, s* ← BDD_size(f, π*) 
4: while elapsed_time < T do 
5:     phase ← SelectPhase(weights, history, E) 
6:     π_new ← ExecutePhase(phase, current_best, θ, E) 
7:     s_new ← BDD_size(f, π_new) 
8:     if s_new < s* then 
9:         π* ← π_new, s* ← s_new 
10:        UpdatePhaseSuccess(phase) 
11:    UpdatePhaseRotations(θ, recent_good_orderings) 
12:    UpdateEntanglementGroups(E, recent_good_orderings) 
13:    UpdateQuantumState(Ψ, recent_evaluations, θ, E) 
14: return π*, s* 
 

III. Experimental Evaluation 
 

III.A. Benchmark Test Design 
 
We designed two benchmark classes that create challenging optimization landscapes: 
 
Hierarchical Dependency Benchmark models systems with layered structures common in many applications [4, 7]. 

Variables are distributed across levels with exponentially growing sizes (1, 2, 4, 8, …). The Boolean function implements 
different operations at each level: level ℓ mod 3 = 0 uses XOR operations, level ℓ mod 3 = 1 uses AND operations, and level 
ℓ mod 3 = 2 uses OR operations. Cross-level dependencies are created using combinations of if-then-else (ITE), AND, OR, 
and XOR operations based on level indices. The optimal ordering places all variables from level 𝑖 before level 𝑖 + 1. 

Deceptive Local Minima Benchmark creates a landscape with multiple local optima that challenge traditional 
optimization methods. Variables are grouped using modulo-4 partitioning, with the optimal ordering following the non-intuitive 
sequence where variables are ordered by 𝑖 mod 4 values in the pattern [0, 2, 1, 3]. The Boolean function applies different 
operations (XOR, AND, OR, ITE) to each modulo group and includes higher-order interactions between groups. This structure 
creates deceptive gradients that mislead greedy optimization methods. 

 
III.B. Experimental Setup 

 
Experiments evaluated three algorithms: QIRL (our proposed method), Sifting [3] (classical iterative improvement), and 

Simulated Annealing (stochastic optimization). Problem sizes of 32, 64, and 128 variables were tested, representing increasing 
complexity levels. Each algorithm was run with a 600-second time limit, with 5 independent runs per configuration. QIRL 
parameters included 𝐾 = 32 superposition states, learning rate 𝛼 = 0.2, and discount factor 𝛾 = 0.95. 

Performance metrics focused on the relative BDD size compared to the best known solution (normalized to 1.0) and 
convergence characteristics in terms of both evaluation count and time. All algorithms were implemented in Python using the 
dd library for BDD operations. 
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IV. Results and Discussion 
 
The experiment results are shown in FIGURE 1, 2, 3, 4, and 5. The discussion about the results are in following sections. 

 
FIGURE 1. Hierarchical Dependency – Size 32 

 
 

.

 
FIGURE 2. Hierarchical Dependency – Size 64 

 
FIGURE 3. Hierarchical Dependency – Size 128 
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FIGURE 4. Deceptive Local Minima – Size 64 

 
 

 
FIGURE 5. Deceptive Local Minima – Size 128 

 

 
FIGURE 6. Performance Comparison Results 
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IV.A. Evaluation Efficiency 
 
The evaluation efficiency plots reveal substantial performance differences between algorithms. For the Hierarchical 

Dependency benchmark, QIRL demonstrates rapid convergence to optimal solutions across all problem sizes. At size 32 
(FIGURE. 1), QIRL reaches the optimal ordering within the first 15 seconds, while Simulated Annealing becomes stuck in 
local optima. This rapid convergence stems from QIRL's quantum exploration phase, which evaluates multiple diverse 
orderings simultaneously through superposition states. While classical methods test orderings sequentially, QIRL's parallel 
exploration quickly identifies promising regions of the search space. As problem size increases to 64 and 128 variables 
(FIGURE. 2, 3), this performance gap widens further. QIRL maintains its efficiency because learned phase rotations guide the 
search toward optimal variable positions, preventing wasteful exploration of poor orderings. The entanglement groups ensure 
that variables with strong dependencies are kept together during optimization, reducing the effective search space from n! to 
manageable subspaces that respect learned relationships. 

 
The Deceptive Local Minima benchmark highlights QIRL's ability to escape suboptimal regions. For size 64 (FIGURE. 

4), both Sifting and Simulated Annealing become trapped in local minima at approximately 1.4× the optimal size. These 
classical methods lack mechanisms to escape once all local improvements are exhausted. In contrast, QIRL successfully 
navigates the deceptive landscape through quantum tunneling operations that make intelligent non-local transformations while 
preserving learned variable relationships. At size 128 (FIGURE. 5), the logarithmic evaluation scale shows QIRL achieving 
near-optimal performance with 100× fewer evaluations than Sifting. This efficiency gain occurs because QIRL learns the 
deceptive modulo-4 pattern through its entanglement mechanism, allowing it to make coordinated moves that classical single-
variable methods cannot discover. 

 
The FIGURE. 6 reveals substantial performance differences between algorithms. Table 1 presents the detailed performance 

metrics with standard deviations across five independent runs, addressing the stochastic nature of the optimization algorithms. 
A key finding from our statistical analysis is the remarkable stability of QIRL compared to classical methods. The coefficient 
of variation (CV) provides insight into the relative variability of each algorithm: 

• QIRL: Average CV = 0.27% (Range: 0.00% - 0.72%) 
• Sifting: Average CV = 6.48% (Range: 0.00% - 19.11%) 
• Simulated Annealing: Average CV = 1.39% (Range: 0.29% - 1.83%) 

 
Table 1: Performance Summary: BDD Sizes (Mean ± Standard Deviation over 5 runs) 

Benchmark Size QIRL Sifting Simulated Annealing 
Hierarchical 64 870.2 ± 0.4 882.2 ± 10.4 898.2 ± 7.9 
Hierarchical 128 3083.2 ± 22.2 4085.8 ± 780.8 3273.8 ± 15.6 
Deceptive 64 494.0 ± 0.0 494.0 ± 0.0 496.0 ± 1.4 
Deceptive 128 1759.4 ± 11.9 1909.8 ± 70.5 1834.8 ± 33.5 

 
IV.B. Time-Based Convergence Analysis 

 
Time-based convergence plots provide complementary insights into algorithm dynamics. QIRL exhibits characteristic 

behavior with rapid initial improvement (0-50 seconds) followed by periodic breakthroughs. The initial steep descent reflects 
the quantum exploration phase effectively surveying the solution landscape through superposition states. The subsequent 
breakthroughs correspond to successful quantum tunneling operations that escape local optima—these are not random restarts 
but intelligent transformations guided by accumulated phase and entanglement information. The narrow confidence bands 
indicate consistent performance across runs, demonstrating that the learned structural information makes QIRL's optimization 
process more deterministic and reliable than stochastic methods. 

Simulated Annealing shows gradual improvement with occasional jumps during temperature reheating. However, these 
jumps become increasingly rare and smaller in magnitude over time, indicating the algorithm's inability to learn from past 
exploration. Without mechanisms to remember good variable relationships, each temperature cycle essentially starts fresh, 
explaining why progress stagnates at suboptimal solutions. The wider variance bands reflect this lack of learning—different 
runs may discover different local optima without any way to share or accumulate knowledge. 

Sifting demonstrates predictable but slow convergence through systematic variable repositioning. The extended plateaus 
in FIGURES 2-5 indicate exhaustion of local improvements, where no single variable move can improve the BDD size. This 
fundamental limitation arises because Sifting lacks both the parallel exploration of QIRL's quantum states and the relationship 



                                      Asian Symposium on Risk Assessment and Management 2025 
www.asram2025.org                                                                                   Pattaya, Thailand, 27 – 29 August 2025  

 

8 

learning of entanglement groups. For larger problem sizes, Sifting's linear search through variable positions becomes 
increasingly inefficient, explaining why it requires 100-1000× more time than QIRL to achieve comparable results. 

 
V. Conclusion and Future Works 

 
This paper presented a quantum-inspired reinforcement learning algorithm for BDD variable ordering optimization. By 

combining quantum superposition principles with reinforcement learning, the algorithm achieves 2-10× performance 
improvements over classical methods on challenging benchmarks. The four-phase adaptive framework successfully balances 
exploration and exploitation, with quantum-inspired mechanisms proving particularly effective for escaping local optima. 

The results demonstrate that quantum-inspired approaches offer significant potential for combinatorial optimization 
problems, even when implemented on classical hardware. As BDD applications continue to grow in complexity across various 
domains including circuit verification, reliability analysis, and formal methods, such advanced optimization techniques become 
increasingly valuable for practical deployment. 

While QIRL demonstrates significant advantages, several areas warrant further investigation. Current experiments limited 
problem sizes to 128 variables; behavior on larger instances requires study. The algorithm’s performance on different Boolean 
function classes beyond the tested benchmarks needs evaluation. Integration with domain-specific heuristics could potentially 
improve performance further. 
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