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ABSTRACT

Fault-tree analysis is a widely adopted method for performing probabilistic risk assessment within the nuclear industry.
However, its effectiveness is often constrained by the availability and quality of reliability data, especially concerning basic
events. This limitation introduces significant uncertainty in the probability distributions used to model failure events.
Furthermore, the assumption of independence among fault-tree events can result in an underestimation of the overall system
risk. The paper proposes a two-step probabilistic framework aimed at improving fault-tree analysis under such uncertainties.
The first step applies an entropy-based affine-invariant stochastic model updating scheme to construct probability-boxes over
limited data. The second step propagates these probability-boxes through the fault-tree logic using probability bounds analysis,
which explicitly incorporates dependency uncertainties. The result provides a more robust and conservative estimate of the top-
event failure probability, enhancing the probabilistic risk assessment towards nuclear safety.
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I. INTRODUCTION

In recent years, nuclear energy has become an increasingly promising option on a global scale considering climate change
and the need for de-carbonisation. Such an option, however, comes with significant risks as seen from the past severe nuclear
accidents such as the Three Mile Island accident in 1979, the Chernobyl accident in 1986, and the Fukushima-Daiichi accident
in 2011 [1]. This brings about the importance of nuclear safety, and therefore the need for probabilistic risk assessment. A
standard tool for probabilistic risk assessment is fault-tree analysis. However, its effectiveness is often limited by two practical
issues: 1) the polymorphic uncertainty associated with the limited availability of reliability data to characterise the failure
probability distribution associated with a given basic event; and 2) the epistemic uncertainty over the dependency between the
basic and the intermediate events of the fault-tree.

Hence, the research objectives and contributions of the paper are two-fold: 1) the proposal of a two-step approach towards
performing a fault-tree analysis under limited data and uncertain event dependencies, which involves the entropy-based affine-
invariant stochastic model updating framework along with probability bounds analysis. Such approach is yet to be presented
within the existing literature; and 2) to implement and validate the proposed approach on a fault-tree model of a “reversed flow
of the water inlet system” accident within the Thai Research Reactor-1/Modification 1 (TRR-1/M1) research reactor [2].

To realize the research objectives, the paper is structured as follows: Section Il presents an overview of the proposed
methodology. This includes a review of the Bayesian model updating theory, and the Boolean algebra under the independence
assumption and uncertain dependencies between multiple events; Section Il presents the application case study which
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introduces the TRR-1/M1 research reactor, the problem set-up, and the results and discussions; and Section IV provides a
summary of the key findings and concludes the paper.

I1. PROPOSED METHODLOGY
I1.A. Stochastic Model Updating
I1.LA.1. Approximate Bayesian Computation
Bayesian model updating is a stochastic approach towards model updating to which the mathematical formalism follows:

p(6|M)-p(D|6, M)

P(9|D,M) = p(D|M) (1)

where P(8|M) is the prior distribution characterising the prior knowledge on the inferred parameter(s) @ before collecting data
D, P(D|6,M) is the likelihood function reflecting the degree of agreement between the observed data D and the model
prediction from M given 6, and P(D|M) is the evidence which ensures that the posterior integrates to one. Details on the terms
in Eg. (1) are found in [3] and [4]. As P(D|M) is a numerical constant, it can be neglected, and the posterior is re-expressed
as:

P(6|D,M) x P(6|M) - P(D|6,M) )
An important aspect in Bayesian model updating is the definition of the likelihood function P(D|@, M), which at times

may not be possible. In such case, the Approximate Bayesian Computation (ABC) approach is implemented as it provides a
likelihood-free approach. For the work, the approximate Gaussian likelihood function is implemented [5]:

P(DI6,M) = exp |- i—j] (3)

where d is the distance function, while ¢ is the width-factor acting as the pre-defined parameter controlling the centralisation
degree of the posterior. It is proposed in [5] that the width-factor should lie within the interval of [10~3, 1071]. For the work
presented in the paper, the Jensen-Shannon divergence ds is implemented as the distance function which is defined as:

1 1
djs(p1,p2) = > (dKL(P1 | T) + dgi.(p2 |l T)) , forT= > (p1 +p2) (4)
where:
— vy'Nbin Npin pl(bxl,...,xd)
dKL(plllpZ) - Zxd=1 ---Zx1=1 pl(bxl,...,xd) : log 7 (5)
pz(bxl,...,xd)

for which Ny, denotes the total bin number used to approximate the distributions p; and p,, and log is the natural logarithm
(to the base e).
In the context of ABC, the interest would be to compute djs(pu, pp) Where py, is the distribution of the model prediction while
pp is the distribution of the observed data. Such distance function was first implemented for ABC in [7], and recently in [8]
and [9].

An important aspect of the Jenson-Shannon divergence is the computation of the parameter Ny;,. An approach to do so
would be via the adaptive-binning algorithm, details on which the readers may refer to [10].

I1.A.2. Transitional Ensemble Markov Chain Monte Carlo

An approach to sample from the posterior defined by Eq. (2) would be the Transitional Ensemble Markov Chain Monte
Carlo (TEMCMC) method [11]. It is a variant of the Transitional Markov Chain Monte Carlo sampling technique proposed in
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[12] which allows for the generation of samples from complex-shaped posteriors (e.g., very peaked or having multiple peaks)
in an iterative manner. This is done using a series of intermediate functions known as transitional distributions P’ defined as:

PJ « P(8]M) - P(D|6, M) (11

where j > 0 is the sampling iteration number, g; is the tempering parameter such that 0 = B, < f; < -+ < fp_1 < By = 1,
and m is the final iteration number. Readers may refer to [11] for further details on the algorithm and implementation of the
TEMCMC sampler.

11.B. Probability Bounds Analysis With Uncertain Boolean Logic

For the research work, only the Boolean “AND” and “OR” logical operations of the fault-tree are of interest and, hence,
discussed in the section. Consider n distinct events of the fault-tree denoted as x; with an associated probability P(x;) = p;,
fori =1, ...,n. In the interest of the research undertaken here, the probabilities p; are characterised by a probability-box (p-
box) [13] to express its associated polymorphic uncertainty such that: p; ~ [pf, pX], where pF and pR are the left and right-
bounding distributional envelope of the p-box respectively.

Under the independence assumption, the resulting associated probability of the event defined by the Boolean “AND”
logical operation between the events x; follows [14]:

PNy x) =TTy pi = [Ty v T PF] (12)

while the resulting associated probability of the event by the Boolean “OR” logical operation between the events x; follows
[14]:

P(V?=1 x)=1- ?:1(1 —-pi) = [1 - ?:1(1 - PiL)r 1- ?:1(1 - Pf)] (13)

In general, the individual events x; may not be independent from one another. Instead, some form of dependency may exist

between them. To provide for a relatively conservative yet robust risk analysis, the element of event dependency can be treated

as an epistemic entity. Under the uncertain dependency between the n input p-boxes P;(x) ~ [P} (x), PR(x)] fori =1, ..,n
the output imprecise distribution is defined as:

P(x) = [P*(x), PR (x)] (14)

Such that in the case of the Boolean “AND” logical operation between the events x;, the bounds are [15]:

PL(x) = sup [max(0, X%, PF(z) — (n— 1))] (15a)
x=NL, 2
PR(x) = 1nf [, PR(z) — max(0,ZL, PR(z;) — (n— 1))] (15b)

lll

whereas in the case of the Boolean “OR” logical operation between the events x;, the bounds follow [15]:

Pt (x) = f/up [Z 1 PE(z) — min(l,Z?zlPiL(zi))] (16a)
PR (xl) lzlx inf [1’1’111’1(1 >r . PR (Zi))] (16b)

Lll

It is to be highlighted that the proposed conservative risk analysis under uncertain event dependencies is currently applicable
when there are no repeated variables (i.e., repeated basic events of a fault-tree). Such challenge is discussed in [14] and remains
an open research question.

The proposed methodology is outlined as follows: The entropy-based affine-invariant stochastic model updating
framework is implemented to probabilistically update a given distribution model over an Empirical Cumulative Distribution
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Function (ECDF) of p; based on the limited experimental data. This yields a p-box over p; to account for the epistemic
uncertainty over the distribution shape parameters. This is done for each root event. From there, the resulting p-boxes across
all the root events are propagated through the Boolean logic, while accounting for the uncertain event dependencies, to yield
the output p-box for the Top event. In summary, a flow-chart is presented in Fig. 1.
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FIGURE 1. Flow-chart Of The Proposed Methodology
I11. CASE STUDY - THAI RESEARCH REACTOR-1/MODIFICATION 1

The case study is based on the TRR-1/M1, which is a Training, Research, Isotopes, General Atomics nuclear research
reactor located within Thailand, and is operated by the Thailand Institute of Nuclear Technology [2]. Since reaching criticality
on 7-NOV-1977, the TRR-1/M1 nuclear research reactor operates at a normal operating power of 1MW with a maximum
licensed power at 1.3 MW [2]. During normal operations, the research reactor generates radioisotopes for industrial, medical,
and agricultural purposes. On top of that, these radioisotopes have also been used to conduct various beam experiments, neutron
radiography, and the prompt-gamma neutron activation analysis. The schematic diagram of the research reactor is provided in
Fig. 2.

I11.A. Problem Set-up

The Top event of interest for the fault-tree analysis is the “reversed flow of the water within the inlet system”, for which
the imprecise probability distribution is to be obtained via the proposed methodology. The corresponding fault-tree is illustrated
in Fig. 3, and details on the respective intermediate and basic events are presented in Table 1. The failure probability data for
the associated basic events of the fault-tree is obtained from Vechgama et al. (2021) [2], and presented in Table 2.
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FIGURE 2. Schematic Diagram Of The TRR-1/M1 Research Reactor Adopted From Vechgama et al. (2021) [2].
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In the case of the basic events 1, 3, 5, and 6, the distribution on the failure probability p, refers to the stochastic variability
(i.e., aleatory uncertainty) of the component’s reliability [14]. To simulate the case where there is limited component reliability
data due to the limited reliability/life tests, the work shall consider N,,s = 20 observations on the p, for the aforementioned
basic events. The resulting ECDF on the p, for the corresponding basic events are presented in Fig. 5.

El

E2b

FIGURE 3. Fault-tree Diagram For The Top Event — Reversed Flow Of The Water Inlet System

TABLE 1. Details On The Respective Events Of The Fault-Tree Presented In Fig. 3

Intermediate events Basic events
Symbol Description Symbol Description
El Reversed flow of the water within the inlet system. 1 Valve V-3 failed to open.
E2a Inlet valve failed to open. 2 Operator failed to open valve V-3.
E2b Inlet pipe breaks. 3 Valve V-4 failed to open.
E3a Valve V-3 failed. 4 Operator failed to open valve V-4.
E3b Valve V-4 failed. 5 Inlet pipe of V-3 breaks.
6 Inlet pipe of V-4 breaks.

To calibrate a probability distribution over the component reliability data ECDF for basic events 1, 3, 5, and 6, a Beta
distribution is chosen due to such distribution having defined bounds between 0 and 1, and having sufficient degrees of freedom
in characterising different distributional shapes. Next, the entropy-based affine-invariant stochastic model updating framework
is implemented to update the Beta distribution over the respective ECDF where the inferred parameters are as follows: @ =
{a;, B;}, fori = 1,3,5, 6. For each inferred parameter, the prior is defined by a Uniform distribution with the corresponding
bounds defined in Table 3. The likelihood is defined by Eqg. (3) with the corresponding width parameter ¢ defined in Table 3.
The choice of ¢ is to ensure that the TEMCMC sampler samples from the posterior over 7 sampling iterations to achieve
convergence over the posterior sample distribution.

TABLE 2. Failure Probability Data For The Associated Basic Events Of The Fault-tree Presented In Fig. 3

Symbol Description Distribution | Shape parameters

1 Valve V-3 failed to open. Beta a, =15, B; =43.00

2 Operator failed to open valve V-3. Fixed value | 3.45 x 10~> per reactor year

3 Valve V-4 failed to open. Beta as; =15, B; =43.00

4 Operator failed to open valve V-4. Fixed value | 3.45 x 10~> per reactor year

5 Inlet pipe of V-3 breaks. Beta as = 1.5, B =62.40

6 Inlet pipe of V-4 breaks. Beta as =15, o =62.40

TABLE 3. Parametric Settings Implemented For The Stochastic Model Updating Step

Basic event 1 3 5 6
Prior bounds a [0.01,100] [0.01,100] [0.01,100] [0.01,100]
Prior bounds 8 [0.01,100] [0.01,100] [0.01,100] [0.01,100]
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| Width parameter, ¢ | 0.015 | 0.015 | 0.015 | 0.010 |

111.B. Results And Discussions

The resulting posterior distribution for the respective inferred parameter is illustrated in Fig. 4, which is also interpreted
as a fuzzy set [17]. From each fuzzy set, the resulting updated epistemic bound over the inferred parameter is obtained at an
alpha-cut level of 0.8 to ensure a non-conservative coverage which encloses the true value. The resulting updated epistemic
bound for the respective inferred parameter is presented in Table 4.
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FIGURE 4. Resulting Beta Distribution P-box Over The ECDF Of The Component Reliability Data

TABLE 4. Results From The Stochastic Model Updating Step

Basic event 1 3 5 6
Updated bounds a [0.992,1.950] [1.326,2.228] [1.283,1.843] [1.129, 1.960]
Updated bounds g [32.764,49.039] [36.713,54.261] [43.715,72.931] [54.029, 72.905]

Based on the results in Table 4, a p-box is constructed over the failure probability p, for the basic events 1, 3, 5, and 6.
This is done via a Double-loop Monte Carlo approach where the outer loop generates N, = 1000 samples from the epistemic
bounds, while the inner loop generates N, = 10000 samples from the resulting Beta distribution given the input realization
from the outer loop. The creates a family of Beta distributions from which the distributional bounds are obtained and presented
in Fig. 5. From there, the resulting p-box is propagated through the fault-tree in Fig. 3 under: 1) the independence assumption
between the events (i.e., see Eq. (12) to (13)); and 2) under uncertain event dependency (i.e., see Eq. (15a) to (16b)). The results
are illustrated in Fig. 6 which shows that under the independence assumption between events, the risk estimates of the Top
event could be significantly underestimated, whereas that under the uncertain event dependency provides a conservative
imprecise risk estimates but one that accounts for the worst-case scenario and the true risk of the Top event. Both resulting p-
boxes enclose the true distribution (in black) as seen in Fig. 6 which verifies the applicability of the proposed methodology.
The latter is obtained by propagating the true probability distribution and probability values (i.e., presented in Table 2) through
the fault-tree under the independence assumption.
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FIGURE 6. Resulting P-box Over The Top Event Under The Different Event Dependency Assumptions
IVV. CONCLUSIONS

The paper proposed a two-step approach towards performing a robust fault-tree analysis under limited data and uncertain
event dependence. The validity and feasibility of the proposed framework is demonstrated in computing the probability
distribution for the reversed flow of the water within the inlet system within the TRIGA nuclear research reactor. The results
support the hypothesis, and is shown to be consistent with what is expected in reality. A key selling point of the proposed
methodology is that it is not reactor specific and can be applied towards any reactor design of interest. In fact, large conventional
reactors such as pressurized water reactors can benefit from the proposed methodology given its relative system configuration
complexity which presents significant epistemic uncertainty over the failure dependencies between its components. Future
research efforts can be invested towards investigating the following: 1) a distribution-free approach towards performing such
analysis with distribution-free probability boxes, aimed at eliminating the element of model form uncertainty; and 2) to
investigate the simultaneous use of both confidence box and probability box to perform a fault-tree analysis, and provide a
statistical interpretation over the resulting statistical structure associated with the Top event probability.

The MATLAB and R codes used to perform the analysis in the paper are made publicly available on GitHub via:
https://github.com/Adolphus8/stochastic-model-updating.qgit
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