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ABSTRACT 

 

        Abnormal event diagnosis models for nuclear power plants have been extensively studied using plant simulators. 

However, discrepancies exist between real plant data and simulator-generated data due to factors such as the simplification of 

thermal-hydraulic codes in simulators and sensor noise in actual plants. These discrepancies can reduce the effectiveness of 

artificial intelligence-based diagnosis models and limit real-plant applicability. To solve this problem, we propose an abnormal 

event diagnosis model incorporating an optimized fuzzy membership function-based feature extraction method to represent 

trend features from simulator-generated data. By optimizing fuzzy membership functions, the model improves the extracting 

performance of trend features and this method can make abnormal event diagnosis model more representative of actual plant 

behavior. A membership function optimization algorithm is employed to systematically adjust membership function parameters 

and ensures more effective trend extraction from the data. This approach enhances the diagnostic performance of the deep 

neural network-based diagnosis model by providing optimally extracted data trends that adjust more robust for real plant 

conditions. Experimental results demonstrate that the optimized fuzzy membership function-based feature extraction method 

effectively captures data trends while mitigating discrepancies between simulated and synthetic data designed to mimic real 

plant characteristics. The findings suggest that the proposed method can improve the robustness and reliability of abnormal 

event diagnosis models by facilitating applicability in real plant environments. This study contributes to developing a more 

robust and reliable artificial intelligence-based abnormal event diagnosis model and ultimately supporting safer and more 

efficient plant operations. 
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I. INTRODUCTION 

 

An abnormal event diagnosis in nuclear power plants remains a crucial safety task because operators must recognize 

changes in plant behavior quickly and decide on corrective actions under severe time pressure. Most artificial-intelligence 

diagnosis models are trained almost exclusively on data generated by high-fidelity plant simulators, because such simulators 

can reproduce a wide range of events without endangering actual equipment. Unfortunately, when these same models are 

deployed in actual control rooms, we cannot expect the same level of performance they demonstrated in the simulator. One 

root cause is that the thermal-hydraulic codes embedded in simulators, although detailed, still simplify or omit secondary 

phenomena, for example three-dimensional mixing, sub-cooled boiling in complex geometries. At the same time, real 

instruments in an operating plant introduce additional uncertainties: sensor drift accumulates over months, calibration bias 

shifts set-points, electromagnetic interference injects random noise, and control-system delays distort time stamps. The 

combined effect is a systematic distribution shift: statistical properties such as mean, variance, and cross-correlation of 

simulator signals differ from those of real-plant signals, as shown in Fig. 1 [1]. Models that learned fine-grained decision 

boundaries in the simulator domain therefore encounter unfamiliar patterns in real plants, leading to reduced diagnostic 

accuracy in the transient [1]. 

 

To solve the discrepancies between simulator data and real-plant data, we propose an abnormal event diagnosis 

framework that converts each plant variable into fuzzy membership functions capturing long-term trends—decrease, stay 

equal, or increase—through a fuzzy-based feature extraction method (FFEM) [2]. In addition, the membership functions for 
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key variables are optimized via gradient descent to maximize inter-class separation, and the resulting optimized membership 

functions are fed into a neural classifier, enabling the extracted features to reproduce real-plant behavior with much higher 

fidelity. Supplying these optimized fuzzy features to a simple one-dimensional convolutional neural network (CNN) greatly 

improves robustness: accuracy stays above 95 percent even when synthetic plant data emulates harsh plant conditions, 

whereas a conventional CNN model without FFEM degrades sharply. The remainder of this paper details the data preparation 

pipeline, the FFEM design, the membership-function optimization algorithm, and the diagnosis network architecture. 

 

 

II. METHOD 

 

I.A. Fuzzy-based Feature Extraction Method 

 

Fuzzy logic was proposed to describe ambiguous or uncertain situations that ordinary binary logic cannot handle. Instead 

of assigning a crisp “true” or “false” value, fuzzy logic expresses how strongly a numerical input belongs to intuitive linguistic 

concepts such as low, normal, or high. This graded approach helps machines interpret real-world sensor signals that include 

noise and drift [3]. Our abnormal event diagnosis framework applies fuzzy logic at the feature level and a neural network at 

the decision level. Every process variable is first converted to a long-term trend value that compares the current reading with 

two earlier points. The trend enters a set of membership functions that assign fuzzy grades for decrease, stay equal, and increase, 

as shown as Fig. 2. The resulting fuzzification represents plant behavior in a form that is less sensitive to short-term fluctuations 

than raw data. A simple one-dimensional convolutional classifier then maps the fuzzy features to an event label. 

 

FIGURE 1. Data discrepancies between simulator and plant data for feedwater 

total flow (left) and feedwater pump 1 flow (right). 

FIGURE 2. Fuzzification process of a data trend. 
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Fig 3. Overall architecture that connects a conventional fuzzy-inference system (top) with the proposed abnormal event 

diagnosis framework (bottom). In the classical scheme, crisp sensor measurements are first fuzzified, evaluated against rules 

stored in the knowledge base by the inference engine, and finally defuzzified into crisp control actions. The lower panel shows 

how the same three-step logic is embedded in our pipeline: simulator variables pass through the optimized FFEM to create 

fuzzy inputs; a neural-network classifier learns an abnormal event diagnosis model during the training phase (black arrows); 

and, during deployment (orange arrows), real-plant measurements flow through the optimized FFEM and the trained model to 

support operator judgment. 

 

 

Fig. 4 illustrates the two-step Fuzzy-based Feature Extraction Method (FFEM) described. For each selected time-series 

variable 𝑥(𝑡), the long-term trend is computed. The three black traces show typical sensor histories; the red markers denote the 

start and end points used to evaluate ∆𝑥. A positive ∆𝑥 (red arrow) indicates a sustained increase, a negative value (blue arrow) 

indicates a sustained decrease, and values near zero (green arrow) correspond to a steady condition. 

 

∆𝑥 = 𝑥(𝑡) − 𝑥(𝑡 − 120𝑠)                                                                         (1) 

 

First, the long-term trend ∆𝑥 is obtained from the time series by Eq. (1). The normalized trend is then evaluated by seven 

triangular membership functions, 𝜇1 through 𝜇7, displayed in the center of Fig. 4 and labeled “high decrease,” “intermediate 

decrease,” “low decrease,” “stay equal,” “low increase,” “intermediate increase,” and “high increase.” Each function returns a 

grade between 0 and 1, and the seven grades collectively form the fuzzy-value vector defined in Eq. (2), 

 

𝑓(∆𝑥) = [𝜇1(∆𝑥), 𝜇2(∆𝑥), … , 𝜇7(∆𝑥)]                                                                  (1) 

 

The right-hand bar charts in Figure 4 visualize this fuzzy set: for a moderate decrease (green path), the “low decrease” and 

“intermediate decrease” grades dominate; for a pronounced drop (blue path), only “high decrease” is active; and for a sharp 

rise (red path), “intermediate increase” dominates with a smaller contribution from “high increase.” 

 

 

 

 

 

 

 

FIGURE 3. Schematic frameworks of a fuzzy inference system and the 

abnormal event diagnosis system 
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I.B. Optimized Fuzzy-based Feature Extraction Method 

 

Before launching the gradient-descent procedure, we compute gain-based feature-importance scores for the entire set of 

process variables using light gradient boosting machine (LGBM). The scores are sorted in descending order, and we keep only 

those variables whose cumulative importance exceeds 95 percent of the total. Membership functions associated with this 95 

percent subset are updated by gradient descent, while the remaining variables retain their default membership functions and 

are excluded from tuning. This filter ensures that optimization targets the most diagnostically relevant variables without being 

distracted by low-information channels. 

 

To sharpen the discriminative power of the seven membership functions 𝜇1, … , 𝜇7, we adjust their break-point parameters 

𝜃 by gradient descent. The update is driven by a inter-class separation loss that enlarges the distance between every in-class 

sample and every out-of-class sample in fuzzy space. where 𝐶 is the number of classes, 𝐷𝑐  and 𝐷𝑐̅ denote the index sets of 

samples with label 𝑐 and “not 𝑐”, and 𝑛𝑐 and 𝑛𝑐̅ are their sizes. The loss is negative because we maximize inter-class separation; 

minimizing ℒ𝑠𝑒𝑝𝑎𝑟  therefore pushes the squared distance term upward. In practice we implement Eq. (5).  

 

ℒ𝑠𝑒𝑝𝑎𝑟(𝜃) = − ∑
1

𝑛𝑐𝑛𝑐̅

𝐶−1
𝑐=0 ∑ ∑ ||𝑓𝜃(𝑥𝑘) − 𝑓𝜃(𝑥𝑙)||

2

2
𝑙∈𝐷𝑐̅𝑘∈𝐷𝑐

    (5) 

 

III. EXPERIMENTAL SETTINGS 

 

The complete workflow for data generation, feature selection, fuzzy feature extraction, and model evaluation is shown in 

Fig. 5. A simulator is used as the common data source, but the datasets for the training environment (left, green) and the test 

environment (right, blue) are generated independently. For training, baseline runs are collected, passed through feature 

selection, the Optimized Fuzzy-based Feature Extraction Method (FFEM), and a CNN classifier that is trained on the 

resulting fuzzy features. For testing, the simulator is re-run under diversified operating conditions and sensor-noise injection 

to create synthetic plant data. The same feature-selection rules and the optimized FFEM are applied, and the pretrained CNN 

classifier is copied into the test pipeline to produce abnormal-event diagnoses. Dashed arrows highlight the noise-injection 

step (upper right) and the internal operation of FFEM (lower right). 

 

We created the entire data set with a 1 400 MWe two-loop Barakah pressurized-water-reactor simulator. One “normal” 

condition and 52 distinct abnormal events were simulated. Each record spans 240 s; the abnormal event is injected exactly at 

𝑡 =  120 𝑠 . The raw log contains about 14,000 variables. We trained an LGBM model on the changeable variable set and 

ranked the gain-based feature-importance scores. Only the 785 variables whose importance is positive were retained. Among 

those 785 variables, we applied membership-function optimization only to the 99 variables whose cumulative importance 

accounted for 95 percent of the total. The remaining variables retained the default membership functions shown in Fig. 4. 

FIGURE 4. Fuzzy-based feature extraction method (FFEM) 
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Normalization relies on physical units: Boolean or categorical variables are left unchanged; level signals expressed in 

percent are divided by 120 % of the design span; all other variables are divided by 120 % of their maximum observed value. 

This unit-aware scaling keeps numeric inputs in a consistent range without distorting engineering meaning.  

 

We adopted a simple one-dimensional CNN consisting of a single Conv1D layer (128 filters, kernel size = 3) followed by 

ReLU activation, max-pooling, 20 % dropout, flattening, and a soft-max output layer. The model is optimized with Adam 

(learning rate = 0.001); training uses a batch size of 64 and early stopping with a patience of 30 epochs. The same architecture 

is applied to both the baseline FFEM and the optimized FFEM so that performance improvements can be attributed solely to 

membership-function optimization. 

 

 

IV. RESULTS 

 

Table 1 compares the diagnostic accuracy of the baseline model (“Not optimized”) and the proposed model with optimized 

FFEM under four test conditions. When no synthetic noise is added (“None”), the accuracy increases from 97.0 % to 97.9 %, 

which is a modest yet measurable improvement. Under progressively harsher noise (Case 1 to Case 3), the optimized model 

consistently outperforms the baseline by 1.0 to 1.4 percentage points and never drops below 95 %. Averaged over the four test 

sets, membership-function optimization delivers a mean improvement of 1.2 percent point. 

 

These findings follow the trend reported by Cho et al. [2]. In their study, removing the FFEM stage caused a clear accuracy 

collapse whenever sensor noise was present, whereas including fuzzy-trend features kept accuracy in the mid-90 % range. Our 

results show the same pattern: the optimized FFEM preserves high accuracy under all three noise cases, confirming that (i) 

fuzzy features shield the classifier from distribution shift and (ii) further tuning of membership functions adds an extra margin 

of robustness. 

 

Fig. 6 shows the seven optimized membership functions for pressurizer pressure control system variable. After gradient 

descent, the triangles are evenly spaced and symmetric, fully covering the observed trend range while maximizing separation 

between adjacent grades. This reshaping explains the systematic accuracy gains observed in Table 1. 

 

FIGURE 5. Abnormal event diagnosis training and test process. 
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TABLE I. Abnormal event diagnosis results. 

 

 

 

 

 

 

 

 

 

V. CONCLUSIONS 

 

This work proposed an abnormal event diagnosis framework that combines (i) LightGBM-based feature selection, (ii) the 

Fuzzy-based Feature Extraction Method (FFEM), and (iii) gradient-descent optimization of membership functions. Only 

variables whose cumulative importance exceeds 95 % are tuned, focusing computational effort on diagnostically relevant 

channels. Experiments with a Barakah 1 400 MWe two-loop PWR simulator demonstrate that the optimized FFEM raises 

average accuracy by 1.2 percent points and maintains over 95 % accuracy even under severe synthetic noise. These outcomes 

confirm that optimizing membership functions to maximize inter-class separation is an effective strategy for bridging the 

simulator-to-plant distribution discrepancies. 

 

Future research will (a) validate the method against actual plant variables, (b) extend the optimizer to Gaussian membership 

shapes, and (c) integrate uncertainty quantification to provide confidence levels alongside diagnostic decisions. 
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