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ABSTRACT 

 

Characterizing and understanding the uncertainties of human reliability is a critical aspect of the risk-related decision-making 

process. Among various kinds of uncertainties, parametric uncertainty of human error probability (HEP) reflects variabilities 

in the method-dependent parameters, such as nominal HEP, effects of performance shaping factors on HEPs, and recovery 

factors. Because of a lack of data supporting these kinds of parametric bounds, the rules for bound determination in human 

reliability analysis (HRA) methods have not been grounded on sufficient evidence. This study attempts to estimate uncertainty 

bounds for parametric uncertainty using Monte Carlo simulations. Extending the authors’ study, here uncertainties residing in 

the error rates of local manipulations and recovery behaviors were additionally involved in the simulations. Based on the results 

of this empirical estimation, we derived the characteristics of parametric uncertainties based on the failures and elements with 

the highest contribution. We expect that these characteristics will be useful in understanding the uncertainty of human 

reliability. 

 

Keywords: Human error probability, Human reliability analysis, Monte Carlo simulation, Parameter uncertainty, Uncertainty 
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I. INTRODUCTION 

 

Human reliability analysis (HRA) is a key part of probabilistic safety assessment (PSA) that looks at how people interact 

with systems during specific events, examines how these interactions can fail, and calculates the chance of human errors 

occurring (known as human error probability or HEP) in these events [1]. However, in order to facilitate the application of 

HRA, HRA models simply represent the complex processes of human–system interactions and cognitive behaviors and rely on 

estimates from expert opinions or data extracted from similar contexts due to insufficient empirical data [2]. Therefore, a clear 

understanding and utilization of the uncertainty in HRA is necessary for risk-based decision making. Many uncertainty 

guidelines generally classify uncertainties into three categories: parameter, model, and completeness [3,4]. Among them, 

parameter uncertainty is associated with the values of the component parameters in the HRA model, such as the nominal HEPs, 

performance shaping factor (PSF) multipliers, and recovery multipliers. Current HRA methods employ beta or lognormal 

distributions to anticipate the parameter bounds [2]. In the case of lognormal distributions, the error factor, which is the ratio 

between the median and the 5th percentile or between the median and the 95th percentile, is often calculated to represent the 

bounds. When a random variable X is lognormally distributed, ln(X)~N(mu, sigma2), sigma is equivalent with ln(error 

factor)/1.645. 

The authors’ previous study attempted to estimate the bounds of HEP values that an HRA method can inherently produce 

[2]. To this end, we categorized the component parameters into method-dependent parameters and scenario-specific parameters 

and conducted random sampling according to the distribution of the method-dependent parameters within several scenario-

specific parameter values found during current application examples of HRA. As a result, we showed that the HEP variable 

most closely matches the lognormal distribution and suggested that the error factor value according to the range of HEP can be 

used as a rule for estimating the parameter uncertainty of HEP. However, the paper also alluded to the fact that parameter 

uncertainties can be determined by factors other than simply the HEP magnitude. Therefore, the present study revisits the 

simulation data for understanding the root causes of the uncertainty variabilities of the EMBRACE (Empirical Data-Based 

Crew Reliability Assessment and Cognitive Error Analysis) method, following previous studies. Prior to this, in order to 

overcome the limitations of the previous Monte Carlo simulation, the simulation data are regenerated by (1) adding component 
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parameters regarding local operation and (2) considering the uncertainty in recovery multipliers. We then compare the statistical 

models that best explain the samples generated by Monte Carlo simulation using statistical measures and discuss the causes 

that explain the dispersion of the samples, focusing on the failure probabilities and the component parameters. 

 

II. UNCERTAINTY PROPAGATION OF EMBRACE PARAMETERS 

 

II.A. Monte Carlo Analysis 

 

In this study, HEP values derived from the EMBRACE method [5,6] are generated by the Monte Carlo method [7]. The 

EMBRACE method is based on the nominal HEPs estimated from HuREX data and the PSF multipliers elicited from a formal 

expert evaluation process, which provides concrete evidence for the distribution of the component parameters. The method-

dependent parameters and scenario-specific parameters of the EMBRACE method can be distinguished as shown in Fig. 1. 

 

 
FIGURE 1. Method-dependent parameters and scenario-specific parameters of the EMBRACE method. 

 

In the EMBRACE method, an HEP is calculated using Eqs. (1), (2), and (3): 

 

𝐻𝐸𝑃 = 𝐹𝑃𝑡𝑝 + 𝐹𝑃𝑐𝑒 , (1) 

where FPtp is the failure probability of timely performance and FPce is the failure probability due to cognitive error, 

𝐹𝑃𝑡𝑝 = 1 − Φ [
ln(𝑇𝑅)

𝜎
] , (2) 

where Φ is the cumulative probability function of the standard normal distribution, TR is the time required divided by the time 

available, and σ is the standard deviation of the log of the distribution, and 

 

𝐹𝑃𝑐𝑒 = ∏ 𝑅𝑀𝐿

𝐿

∑ [∏ 𝑃𝑆𝐹𝑀𝑀𝑗

𝑀𝑗

∑ 𝑁𝑃𝐸𝑃𝑁𝑖𝑗

𝑁𝑖𝑗

]

𝑗

, (3) 

where NPEPNij is the Nth type of nominal primitive error probability (PEP) for the ith task in the jth step, PSFMMj is the Mth 

type of PSF multiplier in the jth step, and RML is the Lth type of recovery multiplier. 
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II.A.1. Scenario-Specific Parameters 

 

The scenario-specific parameters were determined by randomly selecting examples from APR1400 application cases [6]. 

For instance, 28 primitive task combinations were extracted from the APR1400 procedure steps. For each HEP simulation run, 

one, two, or three task combinations were randomly selected. At this time, one or zero PSFs for each combination could have 

negative values so that PSFM could be multiplied by each combination. In addition, assuming that one, two, or three recoveries 

were applicable, the recovery sources to be applied were randomly selected. The TR value was then randomly selected from 

one of the 22 values in the time analysis cases for the APR1400. Through this process, a total of 40 scenario-specific parameter 

combinations were generated. Table I shows a summary of the 40 scenario-specific cases. 

 

TABLE I. Summary of scenario-specific parameter values for Monte Carlo simulation 

Scenario 

ID 

Step 

number 

Task number 

for each step 

Negative PSF Recovery 

attempt number  

TR 

1 2 (1) 11 

(2) 13 

(1) Independent reviewer (Execution) 

(2) Complexity of required task (Execution) 

1 0.31 

2 3 (1) 5 

(2) 8 

(3) 11 

(1) (All positive) 

(2) Training level (Execution) 

(3) (All positive) 

1 0.11 

3 3 (1) 6 

(2) 3 

(3) 5 

(1) Subjective stress (Transition) 

(2) Support function of computer-based procedure 

(Execution) 

(3) (All positive) 

1 0.30 

4 2 (1) 8 

(2) 11 

(1) (All positive) 

(2) Independent reviewer (Execution) 

3 0.40 

5 1 (1) 8 (1) (All positive) 0 0.30 

6 3 (1) 5 

(2) 7 

(3) 10 

(1) (All positive) 

(2) (All positive) 

(3) (All positive) 

0 0.47 

7 3 (1) 9 

(2) 5 

(3) 5 

(1) Career-experience level (Transition) 

(2) Complexity of human–machine interface 

(Transition) 

(3) Support function of computer-based procedure 

(Transition) 

0 0.73 

8 2 (1) 3 

(2) 6 

(1) Complexity of required task (Transition) 

(2) Complexity of human–machine interface 

(Transition) 

0 0.11 

9 3 (1) 10 

(2) 11 

(3) 6 

(1) (All positive) 

(2) Support function of computer-based procedure 

(Transition) 

(3) (All positive) 

2 0.14 

10 3 (1) 11 

(2) 10 

(3) 7 

(1) (All positive) 

(2) (All positive) 

(3) (All positive) 

0 0.31 

11 1 (1) 13 (1) Career-experience level (Transition) 0 0.80 

12 2 (1) 11 (1) Career-experience level (Transition) 

(2) Subjective stress (Transition) 

0 0.30 

13 2 (1) 5 

(2) 6 

(1) (All positive) 

(2) (All positive) 

0 0.73 

14 2 (1) 5 

(2) 6 

(1) (All positive) 

(2) Independent reviewer (Transition) 

3 0.73 

15 1 (1) 10 (1) Communication level (Execution) 3 0.50 

16 3 (1) 8 

(2) 7 

(3) 10 

(1) Procedure quality (Execution) 

(2) (All positive) 

(3) (All positive) 

3 0.10 
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17 3 (1) 8 

(2) 3 

(3) 10 

(1) Procedure quality (Transition) 

(2) Procedure quality (Execution) 

(3) Independent reviewer (Transition) 

3 0.11 

18 2 (1) 6 

(2) 5 

(1) (All positive) 

(2) Crew dynamics (Transition) 

3 0.40 

19 2 (1) 12 

(2) 6 

(1) Subjective stress (Transition) 

(2) Training level (Transition) 

2 0.08 

20 1 (1) 9 (1) (All positive) 1 0.30 

21 1 (1) 9 (1) (All positive) 3 1.00 

22 2 (1) 5 

(2) 6 

(1) Career-experience level (Transition) 

(2) (All positive) 

2 0.08 

23 3 (1) 10 

(2) 6 

(3) 5 

(1) (All positive) 

(2) Complexity of human–machine interface 

(Transition) 

(3) (All positive) 

1 0.77 

24 3 (1) 9 

(2) 7 

(3) 12 

(1) Career-experience level (Execution) 

(2) (All positive) 

(3) (All positive) 

2 0.35 

25 2 (1) 9 

(2) 11 

(1) (All positive) 

(2) (All positive) 

3 0.30 

26 3 (1) 5 

(2) 10 

(3) 12 

(1) Career-experience level (Execution) 

(2) Training level (Execution) 

(3) (All positive) 

1 0.80 

27 2 (1) 7 

(2) 5 

(1) (All positive) 

(2) (All positive) 

0 0.23 

28 1 (1) 3 (1) (All positive) 0 0.18 

29 3 (1) 6 

(2) 7 

(3) 12 

(1) Career-experience level (Execution) 

(2) (All positive) 

(3) (All positive) 

0 0.73 

30 3 (1) 5 

(2) 7 

(3) 5 

(1) (All positive) 

(2) (All positive) 

(3) Procedure quality (Execution) 

2 0.10 

31 1 (1) 9 (1) (All positive) 3 0.40 

32 3 (1) 5 

(2) 6 

(3) 9 

(1) (All positive) 

(2) Procedure quality (Transition) 

(3) Communication level (Transition) 

3 0.13 

33 1 (1) 12 (1) Subjective stress (Execution) 0 0.13 

34 2 (1) 7 

(2) 3 

(1) Training level (Transition) 

(2) Independent reviewer (Execution) 

1 0.50 

35 3 (1) 11 

(2) 9 

(3) 5 

(1) Communication level (Transition) 

(2) Communication level (Transition) 

(3) Training level (Execution) 

1 0.03 

36 2 (1) 7 

(2) 5 

(1) (All positive) 

(2) (All positive) 

2 0.18 

37 1 (1) 5 (1) Training level (Transition) 0 0.47 

38 2 (1) 5 

(2) 11 

(1) (All positive) 

2) Procedure quality (Transition) 

1 0.77 

39 2 (1) 5 

(2) 10 

(1) Complexity of human–machine interface 

(Transition) 

(2) Career-experience level (Transition) 

0 0.77 

40 2 (1) 7 

(2) 3 

(1) (All positive) 

(2) (All positive) 

3 0.50 
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II.A.2. Method-Dependent Parameters 

 

Table II shows the median, 5th percentile, and 95th percentile of four types of method-dependent parameters. Most 

parameters are known to be most closely described by the lognormal distribution [5,6,8,9,10], while in the case of the PEP for 

situation understanding tasks, the beta distribution was used to estimate the PEP values [6]. For the parameters following a 

lognormal distribution, the median value and error factor value were used to estimate the parameter. In the case of FPtp, the 

median value was set when the shape parameter was 0.3403, and the error factor was calculated by regarding the values when 

the shape parameter was 0.4248 and 0.2766 as the 95th and 5th percentiles [5]. For the parameters following a beta distribution, 

the alpha and beta parameters derived from Bayesian inference were employed directly. A total of 10,000 random samples 

were generated from the lognormal or beta distribution of each component, and HEPs were calculated by combining them with 

scenario-specific parameters. 

 

TABLE II. Distribution of the method-dependent parameters 

Category Parameter name Median 5th percentile 95th percentile Ref. 

NPEP Detection–trend 3.08E-04 1.02E-04 9.27E-04 [6,8] 

Detection–synthesis 1.51E-03 4.71E-04 4.80E-03 [6,8] 

Detection–others 1.10E-04 4.31E-05 2.81E-04 [6,8] 

Situation understanding (Beta distribution) 2.16E-03 3.22E-04 7.09E-03 [6,8] 

Decision–sequential step entry or  

Decision–external communication 
1.85E-04 1.01E-04 3.39E-04 

[6,8] 

Decision–procedure transfer or  

Decision–step transfer 
5.62E-03 4.13E-03 7.47E-03 

[6,8] 

Decision–detection 6.22E-05 3.28E-05 1.18E-04 [6,8] 

Decision–manipulation 1.96E-03 1.12E-03 3.38E-03 [6,8] 

Execution–single discrete manipulation or  

Execution–external communication 
1.84E-03 1.20E-03 2.79E-03 

[6,8] 

Execution–single continuous manipulation 1.53E-02 6.47E-03 3.19E-02 [6,8] 

Execution–dynamic manipulation 1.49E-02 7.51E-03 2.82E-02 [6,8] 

Execution-local discrete manipulation 5.00E-03 1.00E-03 2.50E-02 [10] 

Execution-local dynamic manipulation 1.00E-02 2.00E-03 5.00E-02 [10] 

PSFM 

for 

transition 

Complexity of required task 3 2 10 [6,8] 

Subjective stress 5 2 10 [6,8] 

Complexity of human–machine interface 3 1 5 [6,8] 

Procedure quality 5 3 20 [6,8] 

Support function of computer-based procedure 2 1 3 [6,8] 

Independent reviewer 3 1 5 [6,8] 

Crew dynamics 1 1 2 [6,8] 

Communication level 2 1 3 [6,8] 

Training level 5 3 20 [6,8] 

Career-experience level 5 3 20 [6,8] 

PSFM 

for 

execution 

Complexity of required task 3 2 10 [6,8] 

Subjective stress 5 2 10 [6,8] 

Complexity of human–machine interface 5 2 20 [6,8] 

Procedure quality 5 3 20 [6,8] 

Support function of computer-based procedure 3 1 5 [6,8] 

Independent reviewer 3 1 10 [6,8] 

Crew dynamics 1 1 2 [6,8] 

Communication level 2 1 5 [6,8] 

Training level 3 2 5 [6,8] 

RM Review after shift change 0.0164 0.0082 0.0328 [10] 

Review after procedure completion 0.05 0.018 0.14 [10] 

Advisor’s monitoring–first check 0.5 0.25 1 [10] 

Advisor’s monitoring–second check 0.14 0.04 0.5 [10] 
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Step reviewing result 0.5 0.25 1 [10] 

FPtp FPtp 1 − Φ[ln(TR) 

/0.3403] 

1 − Φ[ln(TR) 

/0.2766] 

1 − Φ[ln(TR) 

/0.4248] 

[5] 

 

II.B. Statistical Distribution Fitting 

 

Table III shows the means of HEP, FPtp, and FPce calculated from 10,000 Monte Carlo samples. Among the 40 scenario 

cases, FPtp was calculated higher in 18 cases, and FPce was superior in the remaining 22 cases. We compared which statistical 

model best explained the distributions of HEP values among Weibull, normal, lognormal, exponential, and beta distributions. 

The results of comparing the goodness-of-fit using the Bayesian information criterion (BIC) and Akaike information criterion 

(AIC) measures revealed that the lognormal distribution provided models that best explained the HEPs in all cases. This is 

because most of the method-dependent parameters of EMBRACE follow the lognormal distribution. 

 

TABLE III. Mean values of the simulation samples and estimates for lognormal distributions 

Scenario ID HEP mean FPtp mean FPce mean mu sigma exp (mu) Error factor 

1 3.12E-02 1.36E-03 2.98E-02 −3.7969 0.807401 0.02244 3.77415 

2 3.34E-03 1.00E-06 3.34E-03 −5.80472 0.45193 0.003013 2.10313 

3 5.10E-03 1.04E-03 4.06E-03 −5.61288 0.796492 0.003651 3.70702 

4 6.43E-03 6.43E-03 1.00E-06 −5.64835 1.09252 0.003523 6.0327 

5 5.70E-03 1.13E-03 4.58E-03 −5.25482 0.34077 0.005222 1.75166 

6 4.13E-02 1.72E-02 2.41E-02 −3.25275 0.346237 0.038668 1.76749 

7 2.24E-01 1.84E-01 3.99E-02 −1.51491 0.189006 0.219827 1.36467 

8 2.06E-02 1.00E-06 2.06E-02 −4.04016 0.557961 0.017595 2.50389 

9 5.40E-05 1.00E-06 5.30E-05 −10.1841 0.84808 3.78E-05 4.03535 

10 1.22E-02 1.43E-03 1.07E-02 −4.45038 0.233364 0.011674 1.46797 

11 4.36E-01 2.57E-01 1.80E-01 −0.86441 0.257481 0.4213 1.52738 

12 8.84E-02 1.15E-03 8.73E-02 −2.63458 0.644101 0.071749 2.88506 

13 1.90E-01 1.84E-01 6.10E-03 −1.67613 0.16998 0.187097 1.32262 

14 1.84E-01 1.84E-01 3.30E-05 −1.70744 0.174115 0.181329 1.33165 

15 2.56E-02 2.56E-02 2.00E-06 −3.87966 0.653845 0.020658 2.93168 

16 1.70E-05 1.00E-06 1.60E-05 −11.4394 0.942451 1.08E-05 4.71304 

17 1.86E-03 1.00E-06 1.86E-03 −7.14578 1.306375 0.000788 8.57617 

18 6.42E-03 6.30E-03 1.19E-04 −5.59127 1.038492 0.00373 5.51968 

19 3.84E-04 1.00E-06 3.83E-04 −8.75841 1.324959 0.000157 8.84239 

20 4.64E-03 1.11E-03 3.54E-03 −5.5471 0.528738 0.003899 2.38637 

21 5.00E-01 5.00E-01 4.20E-05 −0.69306 0.000108 0.500042 1.00018 

22 1.25E-03 1.00E-06 1.25E-03 −7.19002 1.001934 0.000754 5.19752 

23 2.27E-01 2.26E-01 9.71E-04 −1.48954 0.13208 0.225477 1.24268 

24 3.48E-03 2.80E-03 6.73E-04 −6.25344 0.988996 0.001924 5.08807 

25 1.15E-03 1.15E-03 7.00E-06 −8.41806 1.74344 0.000221 17.6011 

26 2.62E-01 2.57E-01 4.59E-03 −1.34527 0.108128 0.26047 1.19467 

27 2.49E-02 2.43E-04 2.46E-02 −3.73083 0.26744 0.023973 1.55261 

28 6.07E-03 1.60E-04 5.91E-03 −5.13759 0.189119 0.005872 1.36493 

29 2.42E-01 1.84E-01 5.82E-02 −1.43336 0.173711 0.238506 1.33077 

30 2.18E-03 1.00E-06 2.18E-03 −6.49762 0.861451 0.001507 4.12508 

31 6.49E-03 6.48E-03 1.20E-05 −5.64347 1.089725 0.003541 6.00503 

32 1.12E-04 1.00E-06 1.11E-04 −9.47932 0.869753 7.64E-05 4.18181 

33 6.94E-02 1.00E-06 6.94E-02 −2.79994 0.513144 0.060814 2.32593 

34 5.30E-02 2.55E-02 2.74E-02 −3.14204 0.619842 0.043194 2.7722 

35 5.77E-03 1.00E-06 5.77E-03 −5.52182 0.845858 0.003999 4.02062 

36 1.09E-04 8.30E-05 2.70E-05 −10.5947 1.0199 2.5E-05 5.35342 

37 5.43E-02 1.68E-02 3.75E-02 −3.05301 0.522682 0.047217 2.36272 

38 2.30E-01 2.27E-01 3.35E-03 −1.47787 0.131956 0.228123 1.24243 
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39 2.47E-01 2.26E-01 2.10E-02 −1.40508 0.130892 0.245347 1.24026 

40 2.60E-02 2.59E-02 7.20E-05 −3.86554 0.657314 0.020952 2.94845 

 

The parameters when fitting the HEP distribution to the lognormal distribution are thus shown in the fifth and sixth 

columns of Table III. The exponentiated mu shown in the seventh column indicates the median of the HEP estimated by the 

fitted lognormal distribution. The last column presents the error factor values according to the lognormal distribution. 

 

III. DISCUSSION ON THE CHARACTERISTICS OF UNCERTAINTY BOUNDS 

 

The characteristics of the parameter uncertainty bounds of HEPs can be discussed based on the relationship between 

exponentiated mu and error factor. A scatter plot of the exponentiated mu and error factor can be depicted as in Fig. 2. Here, 

the blue diamonds indicate cases where FPtp is higher than FPce, and the green triangles indicate cases where FPce is higher 

than FPtp. By examining Table III and Fig. 2, the uncertainty bounds of HEP can be said to have the following characteristics. 

First, when FPtp exceeds FPce, a typical trend of the uncertainty bounds of FPtp is observed. Table IV shows the relationship 

between FPtp values and their error factors presented in the previous report. Most blue diamonds in Fig. 2 are coincident with 

Table IV. For example, scenario ID 25 has an error factor of HEP higher than 17, which is consistent with the third row in 

Table IV. On the other hand, for ID 36, the error factor is not high even though the HEP is low. This can be attributed to the 

fact that FPce also affects the error factor because FPtp and FPce have similar values. 

 

 
FIGURE 2. Scatter plot between exponentiated mu (x-axis) and error factor (y-axis). 

 

TABLE IV. Uncertainty bound rule for FPtp in [5] 

FPtp range Error factor 

0.5 <= FPtp 1 

0.05 <= FPtp < 0.5 2 

0.01 <= FPtp < 0.05 3 

0.006 <= FPtp < 0.01 4 

0.003 <= FPtp < 0.006 5 

0.001 <= FPtp < 0.003 7.5 

1.0E-4 <= FPtp < 0.001 17 

1.0E-5 <= FPtp < 1.0E-4 40 

FPtp < 1.0E-5 90 
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Second, when FPce is superior to FPtp, the error factor is found to have a value between 2 and 10. It is observed that the 

magnitude of the error factor is influenced not only by the dimensions of the HEP or FPce but also by the quantity of primitive 

tasks evaluated, the PSF multipliers applied, or the recovery multipliers considered. When the number of primitive tasks, the 

number of negative PSF states, and the number of recovery factors are noted as a, b, and c, respectively, a*(b+1)*(c+1)−2 

could be a measure for the number of the component variables included (note that this scale adds 1 to b and c to avoid cases 

where the formula produces 0 when b and c are 0). Figure 3 shows the correlation between the variable number measure and 

the magnitude of the error factor. In general, it is understood that as the number of component variables increases or the HEP 

diminishes, the error factor escalates. 

 

 
FIGURE 3. Scatter plot between the product of number of tasks included, number of PSFs having a negative state, 

and number of recoveries applied (x-axis), and error factor (y-axis). 

 

Considering the trend of the error factor presented in Fig. 2, it is interpreted that the error factor determination rule 

according to the HEP range proposed in [2] (refer to Table V) conservatively explains the parameter uncertainty bound of HEP 

overall. However, it is difficult to estimate the parameter uncertainty of HEPs smaller than 1.0E-03. In particular, additional 

research is needed regarding the fact that an FPtp lower than 1.E-03 has a high error factor. 

In addition, this study suggests that the determination rule in Table V can be modified to predict the uncertainty bounds 

more accurately. Since the trend of error factors varies slightly depending on whether FPtp or FPce is more dominant within 

HEP, different rules can be applied depending on their dominance. For example, the error factor of FPce can be anticipated 

based on the FPce range, as seen in Table VI. Therefore, after identifying the factor that has a greater impact on HEP between 

FPtp and FPce, HRA practitioners can employ either Table IV or VI as the rule for determining the error factor. 

 

TABLE V. Uncertainty bound rule for HEP proposed in [2] 

HEP range Error factor 
0.5 <= HEP 1 

0.03 <= HEP < 0.5 3 

0.01 <= HEP < 0.03 4 

0.006 <= HEP < 0.01 5 

0.001 <= HEP < 0.006 7 

HEP < 0.001 10 

 

TABLE VI. Uncertainty bound rule for FPce proposed based on Fig. 2 

FPce range Error factor 

0.5 <= FPce 1 

0.07 <= FPce < 0.5 2 

0.03 <= FPce < 0.07 3 

0.001 <= FPce < 0.03 4 

FPce < 0.001 10 



                                      Asian Symposium on Risk Assessment and Management 2025 

www.asram2025.org                                                                                   Pattaya, Thailand, 27 – 29 August 2025  

 

9 

 

IV. CONCLUSION AND FUTURE WORKS 

 

This study extended the Monte Carlo analysis developed in [2] to generate samples additionally considering the 

distributions of component parameters related to local manipulations and recovery behaviors and discussed parameter 

uncertainty rules that can apply to the results of HRA. Since many component parameters are mostly represented by lognormal 

distributions [2,5,6,11], it seems statistically appropriate to interpret HEP uncertainties with lognormal models. Therefore, the 

results of this paper reverified that the determination rule proposed in [2] conservatively describes the distribution of error 

factors with the assumption that simulated HEPs follow lognormal distributions. That is, it is judged that the results of Table V 

provide a reasonable approximation according to the parameter uncertainty rule of the EMBRACE method. For a more precise 

estimation, combining Table IV and Table VI can be a beneficial alternative by identifying which factor more significantly 

contributes to HEP among FPtp and FPce. These suggestions are believed to be realistic and pragmatic because a lot of human 

performance times are described with lognormal distributions [11] and because HEPs in existing PSA models are often assumed 

to be lognormally distributed with their uncertainties expressed using error factors. However, it should also be noted that HRA 

methods can have different distributions for uncertainty assessments depending on the purpose of the HRA application or the 

combination with a PSA model. In addition, more evidence should be generated to gain a clearer understanding of parameter 

uncertainty calculations through additional data collection and collaboration with HRA/PSA practitioners. 

It is noted that this study used exponentiated mu to scrutinize the tendency of the error factor. The exponentiated mu implies 

the median value of HEP, which may differ from the mean value. In particular, low HEP values are expected to have a large 

difference between the median and the mean. We believe that additional research is needed on the accuracy of parameter 

uncertainty estimation in such cases. 
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